精英家教网 > 高中数学 > 题目详情
7.已知点Q为抛物线C:y2=2px(0<p<6)上任意一点,Q到抛物线C准线的距离与其到点N(7,8)距离之和最小值是10,过x轴的正半轴上的点T(t,0)的直线l交抛物线于A,B两点.
(1)求抛物线方程;
(2)是否存在实数t,使得不论直线l绕点T如何转动,$\frac{1}{|AT{|}^{2}}$+$\frac{1}{|BT{|}^{2}}$为定值?

分析 (1)分N在抛物线内外两种情况讨论,根据抛物线的性质列方程得出p;
(2)设l方程为x=my+t,联立方程组得出A,B两点坐标与m,t的关系,代入两点间的距离公式化简即可得出结论.

解答 解:(1)①若N在抛物线内部,
则Q到抛物线C准线的距离与其到点N距离之和得最小值等于N到准线的距离,
∴$\frac{p}{2}$+7=10,解得p=6,不符合题意.
②若N在抛物线外部,则Q到抛物线C准线的距离与其到点N(7,8)距离之和的最小值等于|NF|.
∴$\sqrt{(7-\frac{p}{2})^{2}+{8}^{2}}$=10,解得p=2.
∴抛物线方程为y2=4x.
(2)设直线l的方程为x=my+t,
联立方程组$\left\{\begin{array}{l}{{y}^{2}=4x}\\{x=my+t}\end{array}\right.$,得y2-4my-4t=0.
设A(x1,y1),B(x2,y2),∴y1+y2=4m,y1y2=-4t.
∴$\frac{1}{|AT{|}^{2}}$=$\frac{1}{({x}_{1}-t)^{2}+{{y}_{1}}^{2}}$=$\frac{1}{{m}^{2}{{y}_{1}}^{2}+{{y}_{1}}^{2}}$=$\frac{1}{(1+{m}^{2}){{y}_{1}}^{2}}$.
$\frac{1}{|BT{|}^{2}}$=$\frac{1}{({x}_{2}-t)^{2}+{{y}_{2}}^{2}}$=$\frac{1}{{m}^{2}{{y}_{2}}^{2}+{{y}_{2}}^{2}}$=$\frac{1}{(1+{m}^{2}){{y}_{2}}^{2}}$.
∴$\frac{1}{|AT{|}^{2}}+\frac{1}{|BT{|}^{2}}$=$\frac{1}{(1+{m}^{2}){{y}_{1}}^{2}}$+$\frac{1}{(1+{m}^{2}){{y}_{2}}^{2}}$=$\frac{{{y}_{1}}^{2}+{{y}_{2}}^{2}}{(1+{m}^{2}){{y}_{1}}^{2}{{y}_{2}}^{2}}$=$\frac{{m}^{2}+\frac{t}{2}}{(1+{m}^{2}){t}^{2}}$.
∴当$\frac{t}{2}$=1即t=2时,$\frac{1}{|AT{|}^{2}}+\frac{1}{|BT{|}^{2}}$=$\frac{1}{4}$.
∴存在实数t=2使得$\frac{1}{|AT{|}^{2}}+\frac{1}{|BT{|}^{2}}$为定值.

点评 本题考查了抛物线的性质,直线与抛物线的位置关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.7个学生排成一排,在下列情况下,各有多少种不同排法?
(1)甲排头,
(2)甲不排头,也不排尾,
(3)甲、乙、丙三人必须在一起,
(4)甲、乙之间有且只有两人,
(5)甲、乙、丙三人两两不相邻.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在区间(0,1)内随机选取一个数x,则3x-1<0的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.给出下列三个结论:
①若命题p:?x0∈R,x${\;}_{0}^{2}$+x0+1≤0,则¬p:?x∈R,x2+x+1>0;
②命题“若m>0,则方程x2+x-m=0有实数根”的否命题为:“若m≤0,则方程x2+x-m=0没有实数根”;
③命题p:a=1是x>0,x+$\frac{a}{x}$≥2恒成立的充要条件.
其中正确的是(  )
A.B.②③C.①②D.①③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在△ABC中,角A,B,C所对的边分别是a,b,c,sin2B=sinAsinC,且c=2a,则cosB的值为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图所示,长方体ABCD-EFGH,底面是边长为2$\sqrt{3}$的正方形,DH=2,P为AH中点.
(1)求四棱锥F-ABCD的体积;
(2)若点M在正方形ABCD内(包括边界),且三棱锥P-AMB体积是四棱锥F-ABCD体积的$\frac{1}{8}$,请指出满足要求的点M的轨迹,并在图中画出轨迹图形.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知平面向量$\overrightarrow{a}$=(2,-1),$\overrightarrow{b}$=(1,1),$\overrightarrow{c}$=(-5,1),若($\overrightarrow{a}$+k$\overrightarrow{b}$)⊥$\overrightarrow{c}$,则实数k的值为-$\frac{11}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=a2x-1(a>0且a≠1)过定点(  )
A.(1,1)B.($\frac{1}{2}$,0)C.(1,0)D.($\frac{1}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系xOy中,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,连接椭圆C的四个顶点所形成的四边形面积为4$\sqrt{3}$.
(1)求椭圆C的标准方程;
(2)如图,过椭圆C的下顶点A作两条互相垂直的直线,分别交椭圆C于点M,N,设直线AM的斜率为k,直线l:y=$\frac{{k}^{2}-1}{k}$x分别与直线AM,AN交于点P,Q,记△AMN,△APQ的面积分别为S1,S2,是否存在直线l,使得$\frac{{S}_{1}}{{S}_{2}}$=$\frac{64}{65}$?若存在,求出所有直线l的方程;若不存在,说明理由.

查看答案和解析>>

同步练习册答案