精英家教网 > 高中数学 > 题目详情

(本小题满分10分)
已知, 若在区间上的最大值为, 最小值为, 令.
(1) 求的函数表达式;
(2) 判断的单调性, 并求出的最小值.


(1)

(2)

解析解:(1) 函数的对称轴为直线, 而
……2分
①当时,即时,
②当2时,即时,
 ……7分
(2)
.          ……10分

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分14分)  
函数为常数)的图象过点
(Ⅰ)求的值并判断的奇偶性;
(Ⅱ)函数在区间有意义,求实数的取值范围;
(Ⅲ)讨论关于的方程为常数)的正根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分15分)
已知函数其中
.
(1)求函数的定义域,判断的奇偶性,并说明理由;
(2)若,求使成立的的集合

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分16分)
已知函数).
(1)求函数的值域;
(2)判断函数的奇偶性;
(3)用定义判断函数的单调性;
(4)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

据气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示,过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即为t(h)内沙尘暴所经过的路程s(km).
(1)当t=4时,求s的值;
(2)将s随t变化的规律用数学关系式表示出来;
(3)若N城位于M地正南方向,且距M地650 km,试判断这场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某商品每件成本9元,售价30元,每星期卖出432件。如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值(单位:元,)的平方成正比。已知商品单价降低2元时,一个星期多卖出24件。
(1)将一个星期的商品销售利润表示成的函数;
(2)如何定价才能使一个星期的商品销售利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数是奇函数.
(1)求的值;
(2)判断函数的单调性,并用定义证明;
(3)求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数
(1)当时,求函数的最小值;
(2)若对任意的恒成立,试求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知定义在区间(-1,1)上的函数f(x)既是奇函数又是减函数,G(x)=f(1-x)+f(1-),
求G(x)<0的解

查看答案和解析>>

同步练习册答案