精英家教网 > 高中数学 > 题目详情

(本小题满分12分)已知函数
(1)当时,求函数的最小值;
(2)若对任意的恒成立,试求实数的取值范围


(1)
(2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数,当时,函数在x=2处取得最小值1。
(1)求函数的解析式;
(2)设k>0,解关于x的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)
已知函数.
(Ⅰ) 讨论的奇偶性;
(Ⅱ)判断上的单调性并用定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数.
(1)当时,讨论的单调性;
(2)设时,若对任意,存在,使恒成立,求实数取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
已知, 若在区间上的最大值为, 最小值为, 令.
(1) 求的函数表达式;
(2) 判断的单调性, 并求出的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分16分)已知函数是奇函数
(Ⅰ)求实数的值;
(Ⅱ)试判断函数在()上的单调性,并证明你的结论;
(Ⅲ)若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)设函数y=x+ax+bx+c的图像,如图所示,且与y=0在原点相切,若函数的极小值为–4,

(1)求a、b、c的值;       
(2)求函数的递减区间。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)已知函数有如下性质:如果常数,那么该函数在上是减函数,在上是增函数;
(1)如果函数上是减函数,在上是增函数,求的值;
(2)当时,试用函数单调性的定义证明函数f(x)在上是减函数。
(3)设常数,求函数的最大值和最小值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知为此函数的定义域)同时满足下列两个条件:①函数内单调递增或单调递减;②如果存在区间,使函数在区间上的值域为,那么称为闭函数;
请解答以下问题:
(1) 求闭函数符合条件②的区间
(2) 判断函数是否为闭函数?并说明理由;
(3)若是闭函数,求实数的取值范围;

查看答案和解析>>

同步练习册答案