精英家教网 > 高中数学 > 题目详情
20.某几何体的三视图如图所示,其俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是$\frac{10π}{3}$

分析 根据三视图可知几何体是组合体:上面是半个圆锥、下面是半个圆柱,并求出底面圆的半径以及几何体的高,由椎体、柱体的体积公式求出此几何体的体积.

解答 解:根据三视图可知几何体是组合体:上面是半个圆锥、下面是半个圆柱,
且圆锥的底面圆的半径r=2、高是2,圆柱的底面圆的半径r=2、高是1,
所以此几何体的体积V=$\frac{1}{2}×\frac{1}{3}π×4×2+\frac{1}{2}π×4×1$=$\frac{10π}{3}$,
故答案为:$\frac{10π}{3}$.

点评 本题考查三视图求几何体的体积,由三视图正确复原几何体是解题的关键,考查空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.设U=R,若集合A={0,1,2},B={x|x2-2x-3>0},则A∩∁UB=(  )
A.{0,1}B.{0,2}C.{1,2}D.{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}满足:${a_{n+1}}=a_n^2-2(n∈N*)$,且${a_1}=a+\frac{1}{a}(0<a<1)$.
(Ⅰ)证明:an+1>an
(Ⅱ)若不等式$\frac{1}{a_1}+\frac{1}{{{a_1}{a_2}}}+\frac{1}{{{a_1}{a_2}{a_3}}}+…+\frac{1}{{{a_1}{a_2}{a_3}…{a_n}}}<\frac{1}{2}$对任意n∈N*都成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图是其几何体的三视图,则该几何体的体积为(  )
A.$\frac{4}{3}$B.$\frac{8}{3}$C.$\frac{8\sqrt{2}}{3}$D.$\frac{4\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=|x-1|+|x+1|.
(Ⅰ)解不等式f(x)<3;
(Ⅱ)若f(x)的最小值为m,设a>0,b>0,且a+b=m,求$\frac{1}{a}+\frac{2}{b}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的各项均为正数,Sn为其前n项和,对于任意的n∈N*,满足关系式2Sn=3an-3.
(1)求数列{an}的通项公式;
(2)设数列{bn}的通项公式是bn=$\frac{1}{{(2{{log}_3}{a_n}+1)•(2{{log}_3}{a_n}+3)}}$,bn前n项和为Tn,求证:对于任意的正整数n,总有Tn<$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体外接球的表面积为41π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若某产品的直径长与标准值的差的绝对值不超过1mm时,则视为合格品,否则视为不合格品,在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5000件进行检测,结果发现有50件不合格品.计算这50件不合格品的直径长与标准值的差(单位:mm),将所得数据分组,得到如表频率分布表:
分组频数频率
[-3,-2)50.10
[-2,-1)80.16
(1,2]a0.50
(2,3]10b
(3,4]c0.04
合计501.00
(1)写出如表表格中缺少的数据a,b,c的值:a=25,b=0.2,c=2.
(2)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的频率;
(3)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品.据此估算这批产品中的合格品的件数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.关于正态曲线性质的叙述:
①曲线关于直线x=μ对称,这个曲线在x轴上方;
②曲线关于直线x=σ对称,这个曲线只有当x∈(-3σ,3σ)时才在x轴上方;
③曲线关于y轴对称,因为曲线对应的正态密度函数是一个偶函数;
④曲线在x=μ时处于最高点,由这一点向左右两边延伸时,曲线逐渐降低;
⑤曲线的对称轴由μ确定,曲线的形状由σ确定;
⑥σ越大,曲线越“矮胖”,σ越小,曲线越“高瘦”.
上述说法正确的是(  )
A.①④⑤⑥B.②④⑤C.③④⑤⑥D.①⑤⑥

查看答案和解析>>

同步练习册答案