精英家教网 > 高中数学 > 题目详情
19.已知点(n,an)(n∈N*)在y=ex的图象上,若满足Tn=lna1+lna2+…+lnan>k时n的最小值为5,则k的取值范围是(  )
A.k<15B.k<10C.10≤k<15D.10<k<15

分析 根据题意,求出an与Tn的表达式,利用Tn>k时n的最小值为5,列出不等式T4≤k<T5,求出k的取值范围.

解答 解:∵点(n,an)(n∈N*)在y=ex的图象上,
∴an=en
∴lnan=n;
∴Tn=lna1+lna2+…+lnan=1+2+…+n=$\frac{n(n+1)}{2}$;
又Tn>k时n的最小值为5,
∴T4≤k<T5
即10≤k<15.
故选:C.

点评 本题考查了指数函数与对数函数的运算问题,也考查了转化思想的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,过点M(1,0)的直线1交椭圆C于A,B两点,|MA|=λ|MB|,且当直线l垂直于x轴时,|AB|=$\sqrt{2}$.
(1)求椭圆C的方程;
(2)若λ∈[$\frac{1}{2}$,2],求弦长|AB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设a=sin$\frac{π}{3}$,b=cos$\frac{π}{3}$,c=$\frac{π}{3}$,d=sin$\frac{π}{2}$,则下列关系中正确的是(  )
A.c>d>a>bB.d>c>a>bC.c>d>b>aD.以上答案均不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知角α的终边上一点P与点A(-3,2)关于y轴对称,角β的终边上一点Q与点A关于原点对称,那么sinα+sinβ=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.边长之比为7:8:13的三角形的最大角是$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.不解三角形,判断下列三角形解的个数.
(1)a=5,b=4,A=120°;
(2)a=9,b=10,A=60°;
(3)c=50,b=72,C=135°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.一火炮炮筒与地面成60°角,炮弹射离炮膛时的速度为240m/s,求炮弹所能达到的最大高度与最远水平距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某射击运动员进行射击训练,前三次射击在靶上的着弹点A、B、C刚好是边长为3cm的等边三角形的三个顶点.
(Ⅰ) 该运动员前三次射击的成绩(环数)都在区间[7.5,8.5)内,调整一下后,又连打三枪,其成绩(环数)都在区间[9.5,10.5)内.现从这6次射击成绩中随机抽取两次射击的成绩(记为a和b)进行技术分析.求事件“|a-b|>1”的概率.
(Ⅱ)第四次射击时,该运动员瞄准△ABC区域射击(不会打到△ABC外),则此次射击的着弹点距A、B、C的距离都超过1cm的概率为多少?(弹孔大小忽略不计)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.定义在R上的函数f(x)=$\left\{\begin{array}{l}{(1-2a)x+\frac{1}{2},x∈(-∞,1]}\\{alo{g}_{a}x,x∈(1,+∞)}\end{array}\right.$(其中a>0,且a≠1),对于任意x1≠x2都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0成立,则实数a的取值范围是(  )
A.[$\frac{3}{4}$,1)B.($\frac{1}{2}$,$\frac{3}{4}$]C.($\frac{1}{2}$,$\frac{3}{4}$)D.($\frac{1}{2}$,1)

查看答案和解析>>

同步练习册答案