精英家教网 > 高中数学 > 题目详情
8.某人5次上班途中所花的时间(单位:分钟)分别为12,8,10,11,9,则这组数据的标准差为$\sqrt{2}$.

分析 利用定义求这组数据的平均数、方差和标准差即可.

解答 解:数据12,8,10,11,9的平均数为:
$\overline{x}$=$\frac{1}{5}$×(12+8+10+11+9)=10,
方差为:
s2=$\frac{1}{5}$×[(12-10)2+(8-10)2+(10-10)2+(11-10)2+(9-10)2]=2;
∴这组数据的标准差为s=$\sqrt{2}$.
故答案为:$\sqrt{2}$.

点评 本题考查了利用定义求数据的平均数、方差和标准差的问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知平面向量$\overrightarrow{a}$=(-2,5),$\overrightarrow{b}$=(-$\frac{1}{2}$,-1),则2$\overrightarrow{a}$+4$\overrightarrow{b}$与$\frac{1}{3}$$\overrightarrow{a}$-$\frac{4}{3}$$\overrightarrow{b}$的夹角等于$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知直三棱柱ABC-A1B1C1中,AB=3,AC=4,AB⊥AC,AA1=2,则该三棱柱内切球的表面积与外接球的表面积的和为33π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某医学院读书协会欲研究昼夜温差大小与患感冒人数多少之间的关系,该协会分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如图所示的频率分布直方图.该协会确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.

(Ⅰ)已知选取的是1月至6月的两组数据,请根据2至5月份的数据,求出就诊人数y关于昼夜温差x的线性回归方程;
(Ⅱ)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问(Ⅰ)中该协会所得线性回归方程是否理想?
参考公式:回归直线的方程$\widehaty=\widehatbx+\widehata$,其中$\widehatb=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}}-n\overline x\overline y}}{{\sum_{i=1}^n{x_i^2}-n{{\overline x}^2}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.中国有个名句“运筹帷幄之中,决胜千里之外”.其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,如下表:

表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推,例如6613用算筹表示就是:,则5288用算筹式可表示为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设向量$\overrightarrow{a}$=(4sin$\frac{ω}{2}$x,1),$\overrightarrow{b}$=($\frac{1}{2}$cos$\frac{ω}{2}$x,-1)(ω>0),若函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$+1在区间[-$\frac{π}{5}$,$\frac{π}{4}$]上单调递增,则实数ω的取值范围为(0,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的图象如图所示,为了得到g(x)=cos(ω+$\frac{π}{3}$)的图象,则只将f(x)的图象(  )
A.向左平移$\frac{π}{4}$个单位B.向右平移$\frac{π}{4}$个单位
C.向左平移$\frac{π}{12}$个单位D.向右平移$\frac{π}{12}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知F1,F2为椭圆C的两个焦点,P为C上一点,若|PF1|,|F1F2|,|PF2|成等差数列,则C的离心率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知a,b,c为正实数,且$a+2b≤8c,\frac{2}{a}+\frac{3}{b}≤\frac{2}{c}$,则$\frac{3a+8b}{c}$的取值范围为[27,30].

查看答案和解析>>

同步练习册答案