精英家教网 > 高中数学 > 题目详情
19.已知直三棱柱ABC-A1B1C1中,AB=3,AC=4,AB⊥AC,AA1=2,则该三棱柱内切球的表面积与外接球的表面积的和为33π.

分析 求出外接球的半径、内切球的半径,即可求出该三棱柱内切球的表面积与外接球的表面积的和.

解答 解:将三棱柱扩充为长方体,对角线长为$\sqrt{9+16+4}$=$\sqrt{29}$,∴外接球的半径为$\frac{\sqrt{29}}{2}$,外接球的表面积为29π,
△ABC的内切圆的半径为$\frac{3×4}{3+4+5}$=1,∴该三棱柱内切球的表面积4π,
∴三棱柱内切球的表面积与外接球的表面积的和为29π+4π=33π,
故答案为:33π.

点评 本题考查该三棱柱内切球的表面积与外接球的表面积的和,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.下列命题中,真命题的个数为①对任意的a,b∈R,a>b是a|a|>b|b|的充要条件;②在△ABC中,若A>B,则sinA>sinB;③非零向量$\overrightarrow a,\overrightarrow b$,若$\overrightarrow a•\overrightarrow b>0$,则向量$\overrightarrow a$与向量$\overrightarrow b$的夹角为锐角;④$\frac{ln3}{3}>\frac{ln2}{2}>\frac{ln5}{5}$.(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)与椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的焦点重合,离心率互为倒数,设F1,F2为双曲线C的左、右焦点,P为右支上任意一点,则$\frac{|P{F}_{1}{|}^{2}}{|P{F}_{2}|}$的最小值为(  )
A.4B.8C.16D.32

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知圆F1:(x+1)2+y2=16,定点F2(1,0),A是圆F1上的一动点,线段F2A的垂直平分线交半径F1A于P点.
(Ⅰ)求P点的轨迹C的方程;
(Ⅱ)四边形EFGH的四个顶点都在曲线C上,且对角线EG,FH过原点O,若kEG•kFH=-$\frac{3}{4}$,求证:四边形EFGH的面积为定值,并求出此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)是定义在R上的奇函数,且当x∈(0,+∞)时,f(x)=2017x+log2017x,则f(x)在R上的零点的个数为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设不等式0<|x+2|-|1-x|<2的解集为M,a,b∈M
(1)证明:|a+$\frac{1}{2}$b|<$\frac{3}{4}$;
(2)比较|4ab-1|与2|b-a|的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.“a=$\frac{1}{5}$”是“直线2ax+(a-1)y+2=0与直线(a+1)x+3ay+3=0垂直”的充分不必要.条件(从“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”中选取一个填入)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某人5次上班途中所花的时间(单位:分钟)分别为12,8,10,11,9,则这组数据的标准差为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(n)=n2cos(nπ),数列{an}满足an=f(n)+f(n+1)(n∈N+),则a1+a2+…+a2n=-2n.

查看答案和解析>>

同步练习册答案