精英家教网 > 高中数学 > 题目详情
9.已知函数f(n)=n2cos(nπ),数列{an}满足an=f(n)+f(n+1)(n∈N+),则a1+a2+…+a2n=-2n.

分析 函数f(n)=n2cos(nπ),数列{an}满足an=f(n)+f(n+1)(n∈N+),可得:a2k-1=4k-1.a2k=-4k-1.a2k-1+a2k=-2.即可得出.

解答 解:函数f(n)=n2cos(nπ),数列{an}满足an=f(n)+f(n+1)(n∈N+),
a2k-1=f(2k-1)+f(2k)=-(2k-1)2+(2k)2=4k-1.
a2k=f(2k)+f(2k+1)=(2k)2-(2k+1)2=-4k-1.
∴a2k-1+a2k=-2.
∴a1+a2+…+a2n=-2n.
故答案为:-2n.

点评 本题考查了三角函数求值、数列分组求和、分类讨论方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知直三棱柱ABC-A1B1C1中,AB=3,AC=4,AB⊥AC,AA1=2,则该三棱柱内切球的表面积与外接球的表面积的和为33π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的图象如图所示,为了得到g(x)=cos(ω+$\frac{π}{3}$)的图象,则只将f(x)的图象(  )
A.向左平移$\frac{π}{4}$个单位B.向右平移$\frac{π}{4}$个单位
C.向左平移$\frac{π}{12}$个单位D.向右平移$\frac{π}{12}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知F1,F2为椭圆C的两个焦点,P为C上一点,若|PF1|,|F1F2|,|PF2|成等差数列,则C的离心率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=sin(x+φ)-2cos(x+φ)(0<φ<π)的图象关于直线x=π对称,则cos2φ=(  )
A.$\frac{3}{5}$B.$-\frac{3}{5}$C.$\frac{4}{5}$D.$-\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=|2x-a|+|2x-1|,a∈R.
(I)当a=3时,求关于x的不等式f(x)≤6的解集;
(II)当x∈R时,f(x)≥a2-a-13,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在公比为q且各项均为正数的等比数列{an}中,Sn为{an}的前n项和.若a1=$\frac{1}{{q}^{2}}$,且S5=S2+2,则q的值为$\frac{\sqrt{5}-1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知a,b,c为正实数,且$a+2b≤8c,\frac{2}{a}+\frac{3}{b}≤\frac{2}{c}$,则$\frac{3a+8b}{c}$的取值范围为[27,30].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知双曲线$\frac{{x}^{2}}{a-3}$+$\frac{{y}^{2}}{2-a}$=1,焦点在y轴上,若焦距为4,则a等于(  )
A.$\frac{3}{2}$B.5C.7D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案