精英家教网 > 高中数学 > 题目详情
20.函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的图象如图所示,为了得到g(x)=cos(ω+$\frac{π}{3}$)的图象,则只将f(x)的图象(  )
A.向左平移$\frac{π}{4}$个单位B.向右平移$\frac{π}{4}$个单位
C.向左平移$\frac{π}{12}$个单位D.向右平移$\frac{π}{12}$个单位

分析 根据函数f(x)的部分图象求出T、ω和φ的值,写出f(x)的解析式;
再化g(x)=sin[2(x+$\frac{π}{4}$)+$\frac{π}{3}$],利用图象平移得出结论.

解答 解:根据函数f(x)=sin(ωx+φ)的部分图象知,
$\frac{T}{4}$=$\frac{7π}{12}$-$\frac{π}{3}$=$\frac{π}{4}$,
∴T=π,即$\frac{2π}{ω}$=π,解得ω=2;
再根据五点法画图知2×$\frac{π}{3}$+φ=π,解得φ=$\frac{π}{3}$,
∴f(x)=sin(2x+$\frac{π}{3}$);
又g(x)=cos(2x+$\frac{π}{3}$)
=sin[(2x+$\frac{π}{3}$)+$\frac{π}{2}$]
=sin[2(x+$\frac{π}{4}$)+$\frac{π}{3}$],
为了得到g(x)的图象,
只需将f(x)的图象向左平移$\frac{π}{4}$个单位即可.
故选:A.

点评 本题主要考查由函数y=Asin(ωx+∅)的部分图象求解析式,以及图象平移的应用问题,是综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)与椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的焦点重合,离心率互为倒数,设F1,F2为双曲线C的左、右焦点,P为右支上任意一点,则$\frac{|P{F}_{1}{|}^{2}}{|P{F}_{2}|}$的最小值为(  )
A.4B.8C.16D.32

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.“a=$\frac{1}{5}$”是“直线2ax+(a-1)y+2=0与直线(a+1)x+3ay+3=0垂直”的充分不必要.条件(从“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”中选取一个填入)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.某人5次上班途中所花的时间(单位:分钟)分别为12,8,10,11,9,则这组数据的标准差为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,抛物线E:x2=4y的焦点B是双曲线虚轴上的一个顶点,若线段BF与双曲线C的右支交于点A,且$\overrightarrow{BA}$=3$\overrightarrow{AF}$,则双曲线C的离心率为$\frac{\sqrt{17}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知△ABC中,AB=AC,∠BAC=120°,BC=4,若点P是边BC上的动点,且P到AB,AC距离分别为m,n,则$\frac{4}{m}+\frac{1}{n}$的最小值为$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某公司在销售某种环保材料过程中,记录了每日的销售量x(吨)与利润y(万元)的对应数据,下表是其中的几组对应数据,由此表中的数据得到了y关于x的线性回归方程$\widehat{y}$=0.7x+a,若每日销售量达到10吨,则每日利润大约是(  )
 x 3 5
 y 2.5 3 4 4.5
A.7.2万元B.7.35万元C.7.45万元D.7.5万元

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(n)=n2cos(nπ),数列{an}满足an=f(n)+f(n+1)(n∈N+),则a1+a2+…+a2n=-2n.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,在底边为等边三角形的斜三棱柱ABC-A1B1C1中,AA1=$\sqrt{3}$AB,四边形B1C1CB为矩形,过A1C做与直线BC1平行的平面A1CD交AB于点D.
(Ⅰ)证明:CD⊥AB;
(Ⅱ)若AA1与底面A1B1C1所成角为60°,求二面角B-A1C-C1的余弦值.

查看答案和解析>>

同步练习册答案