精英家教网 > 高中数学 > 题目详情
15.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,抛物线E:x2=4y的焦点B是双曲线虚轴上的一个顶点,若线段BF与双曲线C的右支交于点A,且$\overrightarrow{BA}$=3$\overrightarrow{AF}$,则双曲线C的离心率为$\frac{\sqrt{17}}{3}$.

分析 由题意可知b=1,求出A点坐标,代入双曲线方程化简即可得出a,c的关系,从而得出离心率的值.

解答 解:F(c,0),B(0,1),∴b=1.
设A(m,n),则$\overrightarrow{BA}$=(m,n-1),$\overrightarrow{AF}$=(c-m,-n),
∵$\overrightarrow{BA}$=3$\overrightarrow{AF}$,
∴$\left\{\begin{array}{l}{m=3c-3m}\\{n-1=-3n}\end{array}\right.$,解得$\left\{\begin{array}{l}{m=\frac{3}{4}c}\\{n=\frac{1}{4}}\end{array}\right.$,即A($\frac{3}{4}c$,$\frac{1}{4}$),
∵A在双曲线$\frac{{x}^{2}}{{a}^{2}}$-y2=1的右支上,
∴$\frac{9{c}^{2}}{16{a}^{2}}$-$\frac{1}{16}$=1,∴$\frac{{c}^{2}}{{a}^{2}}$=$\frac{17}{9}$.
∴e=$\frac{c}{a}$=$\frac{\sqrt{17}}{3}$.
故答案为:$\frac{\sqrt{17}}{3}$.

点评 本题考查了双曲线的性质,平面向量的运算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.如图所示的多面体中,四边形ACDF为矩形,且平面ACDF⊥平面BCDE,平面ACDF⊥平面ABC,BC=2DE,DE∥BC,CE∩BD=P.
(Ⅰ)证明:BC⊥AD.
(Ⅱ)在棱AC上找一点Q,使得PQ∥平面ABE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若a,b∈R,且3b+(2a-2)i=1-i,则a+b的值为(  )
A.-$\frac{1}{6}$B.$\frac{1}{6}$C.$\frac{5}{6}$D.-$\frac{7}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.中国有个名句“运筹帷幄之中,决胜千里之外”.其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,如下表:

表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推,例如6613用算筹表示就是:,则5288用算筹式可表示为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,在直三棱柱ABC-A1B1C1中,若四边形AA1C1C是边长为4的正方形,且AB=3,BC=5,M是AA1的中点,则三棱锥A1-MBC1的体积为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的图象如图所示,为了得到g(x)=cos(ω+$\frac{π}{3}$)的图象,则只将f(x)的图象(  )
A.向左平移$\frac{π}{4}$个单位B.向右平移$\frac{π}{4}$个单位
C.向左平移$\frac{π}{12}$个单位D.向右平移$\frac{π}{12}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.通过对某城市一天内单次租用共享自行车的时间50分钟到100钟的n人进行统计,按照租车时间[50,50),[60,70),[70,80),[80,90),[90,100)分组做出频率分布直方图如图1,并作出租用时间和茎叶图如图2(图中仅列出了时间在[50,60),[90,100)的数据).

(1)求n的频率分布直方图中的x,y
(2)从租用时间在80分钟以上(含80分钟)的人数中随机抽取4人,设随机变量X表示所抽取的4人租用时间在[80,90)内的人数,求随机变量X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=sin(x+φ)-2cos(x+φ)(0<φ<π)的图象关于直线x=π对称,则cos2φ=(  )
A.$\frac{3}{5}$B.$-\frac{3}{5}$C.$\frac{4}{5}$D.$-\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.曲线C是平面内与两个定点F1(-2,0),F2(2,0)的距离之积等于9的点的轨迹.给出下列命题:
①曲线C过坐标原点;
②曲线C关于坐标轴对称;
③若点P在曲线C上,则△F1PF2的周长有最小值10;
④若点P在曲线C上,则△F1PF2面积有最大值$\frac{9}{2}$.
其中正确命题的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案