精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)是定义在R上的奇函数,且当x∈(0,+∞)时,f(x)=2017x+log2017x,则f(x)在R上的零点的个数为3.

分析 x>0时,求f′(x),并容易判断出f′(x)>0,所以f(x)在(0,+∞)上是单调函数.然后判断有没有x1,x2使得f(x1)f(x2)<0:分别取x=2017-2017,1,便可判断f(2017-2017)<0,f(1)>0,从而得到f(x)在(0,+∞)上有一个零点,根据奇函数的对称性便得到f(x)在(-∞,0)上有一个零点,而因为f(x)是奇函数,所以f(0)=0,这样便得到在R上f(x)零点个数为3.

解答 解:x>0时,f′(x)=2017xln2017+$\frac{1}{xln2017}$>0,∴f(x)在(0,+∞)上单调递增,
取x=2017-2017,则f(2017-2017)=$201{7}^{\frac{1}{2017}}$-2017<0,又f(1)=2017>0;
∴f(x)在(0,+∞)上有一个零点,根据奇函数关于原点对称,f(x)在(-∞,0)也有一个零点;
又f(0)=0;
∴函数f(x)在R上有3个零点.
故答案为:3.

点评 考查奇函数的概念,函数导数符号和函数单调性的关系,函数零点的概念,以及判断函数在一区间上有没有零点,以及有几个零点的方法,奇函数图象关于原点的对称性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=2x3-3x2+1-(x2-3x+3)ex,(k∈R).
(1)讨论函数f(x)的单调性;
(2)函数g(x)=f(x)+(x2-3x+3)ex,若过点A(m,-4)恰有两条直线与曲线y=g(x)相切,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图所示的多面体中,四边形ACDF为矩形,且平面ACDF⊥平面BCDE,平面ACDF⊥平面ABC,BC=2DE,DE∥BC,CE∩BD=P.
(Ⅰ)证明:BC⊥AD.
(Ⅱ)在棱AC上找一点Q,使得PQ∥平面ABE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=|2x+a|+|2x-2b|+3
(Ⅰ)若a=1,b=1,求不等式f(x)>8的解集;
(Ⅱ)当a>0,b>0时,若f(x)的最小值为5,求$\frac{1}{a}$+$\frac{1}{b}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)是定义在R上的奇函数,且在区间(0,+∞)上单调递增,若实数a满足$f({e^{|{\frac{1}{2}a-1}|}})+f(-\sqrt{e})<0$,则a的取值范围是(1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知直三棱柱ABC-A1B1C1中,AB=3,AC=4,AB⊥AC,AA1=2,则该三棱柱内切球的表面积与外接球的表面积的和为33π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若a,b∈R,且3b+(2a-2)i=1-i,则a+b的值为(  )
A.-$\frac{1}{6}$B.$\frac{1}{6}$C.$\frac{5}{6}$D.-$\frac{7}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.中国有个名句“运筹帷幄之中,决胜千里之外”.其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,如下表:

表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推,例如6613用算筹表示就是:,则5288用算筹式可表示为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=sin(x+φ)-2cos(x+φ)(0<φ<π)的图象关于直线x=π对称,则cos2φ=(  )
A.$\frac{3}{5}$B.$-\frac{3}{5}$C.$\frac{4}{5}$D.$-\frac{4}{5}$

查看答案和解析>>

同步练习册答案