精英家教网 > 高中数学 > 题目详情
8.设z1,z2∈C,则“z1、z2中至少有一个数是虚数”是“z1-z2是虚数”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分又非必要条件

分析 根据充分条件和必要条件的定义结合复数的有关概念进行判断即可.

解答 解:设z1=1+i,z2=i,满足z1、z2中至少有一个数是虚数,则z1-z2=1是实数,则z1-z2是虚数不成立,
若z1、z2都是实数,则z1-z2一定不是虚数,因此当z1-z2是虚数时,
则z1、z2中至少有一个数是虚数,即必要性成立,
故“z1、z2中至少有一个数是虚数”是“z1-z2是虚数”的必要不充分条件,
故选:B.

点评 本题主要考查充分条件和必要条件的判断,根据复数的有关概念进行判断是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{b}$=(1,$\sqrt{3}$),$\overrightarrow{b}$•($\overrightarrow{b}$-$\overrightarrow{a}$)=-3,则向量$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为$\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.列表讨论函数y=$\frac{4(x+1)}{{x}^{2}}$-2的升降、凹凸、极值、拐点,并求出水平、垂直的切线.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设f-1(x)为f(x)=$\frac{x}{2x+1}$的反函数,则f-1(2)=-$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知点A的坐标为(4$\sqrt{3}$,1),将OA绕坐标原点O逆时针旋转$\frac{π}{3}$至OB,则点B的纵坐标为(  )
A.$\frac{{3\sqrt{3}}}{2}$B.$\frac{{5\sqrt{3}}}{2}$C.$\frac{11}{2}$D.$\frac{13}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若曲线C在顶点为O的角α的内部,A、B分别是曲线C上相异的任意两点,且α≥∠AOB,我们把满足条件的最小角α叫做曲线C相对点O的“确界角”.已知O为坐标原点,曲线C的方程为y=$\left\{\begin{array}{l}{\sqrt{1+{x}^{2}},x≥0}\\{2-\sqrt{1-{x}^{2}},x<0}\end{array}\right.$,那么它相对点O的“确界角”等于(  )
A.$\frac{π}{3}$B.$\frac{5π}{12}$C.$\frac{7π}{12}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.定义运算“•”如下:x•y=$\left\{\begin{array}{l}{x,x≥y}\\{y,x<y}\end{array}\right.$,若函数f(x)=m-(1-2x)•(2x-2)有两个零点,则(  )
A.m∈(-$\frac{1}{2}$,+∞)B.m∈(-$\frac{1}{2}$,1)C.m∈[-$\frac{1}{2}$,+∞)D.m∈[-$\frac{1}{2}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某中学为了解高三学生数学课程的学习情况,从全部2000名学生的数学考试成绩中随机抽取部分学生的考试成绩进行统计分析,得到如下的样本的频率分布直方图,已知成绩在[80,90)的学生共有40人,则样本中成绩在[60,80)内的人数为(  )
A.102B.104C.112D.114

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.g(x)=$\sqrt{2}$2x-1,g(x)≤t2-2mt+1对所有的x∈[-1,1]及m∈[-1,1]恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案