| A. | 若f1(-1)=f1(1),则f(-1)>f(1) | B. | 若f2(-1)=f2(1),则f(-1)>f(1) | ||
| C. | 若f(-1)=f(1),则f2(-1)>f2(1) | D. | 若f2(1)=f1(-1),则f1(-1)<f1(1) |
分析 由新定义可知f1(-1)=f2(-1)=f(-1),f(x)在[-1,1]上的最大值为f1(1),最小值为f2(1).
解答 解:(1)若f1(-1)=f1(1),则f(-1)为f(x)在[-1,1]上的最大值,
∴f(-1)>f(1)或f(-1)=f(1).故A错误;
(2)若f2(-1)=f2(1),则f(-1)是f(x)在[-1,1]上的最小值,
∴f(-1)<f(1)或f(-1)=f(1),故B错误.
(3)若f(-1)=f(1),则f(x)关于y轴对称,
∴当a>0时,f2(1)=f(0)≠f(-1)=f2(-1),故C错误.
(4)若f2(1)=f1(-1),则f(-1)为f(x)在[-1,1]上的最小值,
而f1(-1)=f(-1),f1(1)表示f(x)在[-1,1]上的最大值,
∴f1(-1)<f1(1).故D正确.
故选:D.
点评 本题考查了对于新定义的理解和二次函数的图象与性质,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | {1} | B. | {x|0≤x<2} | C. | {0,1} | D. | {0,1,2} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1,2} | B. | {1,3} | C. | {2,4} | D. | {3,4} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若a,b∈Z,则fm(a+b)=fm(a)+fm(b) | |
| B. | 若a,b,k∈Z,且fm(a)=fm(b),则fm(ka)=fm(kb) | |
| C. | 若a,b,c,d∈Z,且fm(a)=fm(b),fm(c)=fm(d),则fm(a+c)=fm(b+d) | |
| D. | 若a,b,c,d∈Z,且fm(a)=fm(b),fm(c)=fm(d),则fm(ac)=fm(bd) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com