精英家教网 > 高中数学 > 题目详情
1.不等式|x-1|-|x-4|>2的解集为{x|x>$\frac{7}{2}$}.

分析 根据|x-1|-|x-4|表示数轴上的x对应点到1对应点的距离减去它到4对应点的距离,而$\frac{7}{2}$到1对应点的距离减去它到4对应点的距离正好等于2,由此可得不等式的解集.

解答 解:由于|x-1|-|x-4|表示数轴上的x对应点到1对应点的距离减去它到4对应点的距离,
而$\frac{7}{2}$到1对应点的距离减去它到4对应点的距离正好等于2,
故不等式|x-1|-|x-4|>2的解集为:{x|x>$\frac{7}{2}$},
故答案为:{x|x>$\frac{7}{2}$}.

点评 本题主要考查绝对值的意义,绝对值不等式的解法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.用秦九韶算法求多项式f(x)=4x4+3x3+2x2+x+7的值,则f(2)的值为(  )
A.98B.105C.112D.119

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=\frac{{\sqrt{a}x+b}}{{1+{x^2}}}$是定义在(-1,1)上的奇函数,且$f(\frac{1}{2})=\frac{2}{5}$.
(1)求实数a,b的值;
(2)判断并证明f(x)在(-1,1)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.复数$\frac{2-i}{1-i}$的共轭复数是(  )
A.$\frac{3+i}{2}$B.$\frac{1-i}{2}$C.$\frac{3-i}{2}$D.$\frac{-3-i}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在锐角△ABC中,角A,B,C所对的边分别为a,b,c,若$sinA=\frac{{2\sqrt{2}}}{3}$,a=2,ccosB+bcosC=2acosB,则b的值为(  )
A.$2\sqrt{6}$B.$\frac{{3\sqrt{2}}}{4}$C.$\frac{{3\sqrt{3}}}{4}$D.$\frac{{3\sqrt{6}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)计算${(5\frac{1}{16})^{0.5}}-2×{(2\frac{10}{27})^{-\frac{2}{3}}}-2×{(\sqrt{2+π})^0}÷{(\frac{3}{4})^{-2}}$
(2)计算${9^{{{log}_3}2}}-4{log_4}3•{log_{27}}8+\frac{1}{3}{log_6}8-2{log_{{6^{-1}}}}\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的四个顶点是A1,A2,B1,B2,△A2B1B2是边长为2的正三角形.
(1)求椭圆的方程;
(2)若G是椭圆上在第一象限内的动点,直线B1G交线段A2B2于点E,求$\frac{|G{B}_{1}|}{|E{B}_{1}|}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某几何体的三视图如图所示,则该几何体的体积是6-$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.直线3x+4y+2m=0与圆x2+(y-$\frac{1}{2}$)2=1相切,且实数m的值为(  )
A.log23B.2C.log25D.3

查看答案和解析>>

同步练习册答案