ijµ¥Î»ÊµÐÐÐÝÄê¼ÙÖÆ¶ÈÈýÄêÒÔÀ´£¬¶Ô50ÃûÖ°¹¤ÐÝÄê¼ÙµÄ´ÎÊý½øÐеĵ÷²éͳ¼Æ½á¹ûÈçϱíËùʾ£º
ÐݼÙ123
´ÎÊý121
ÈËÊý005
¸ù¾ÝÉϱíÐÅÏ¢½â´ðÒÔÏÂÎÊÌ⣺
£¨1£©´Ó¸Ãµ¥Î»ÈÎÑ¡Á½ÃûÖ°¹¤£¬ÓæDZíʾÕâÁ½ÈËÐÝÄê¼Ù´ÎÊýÖ®ºÍ£¬¼Ç¡°¦Ç=4¡±ÎªÊ¼þA£¬ÇóʼþA·¢ÉúµÄ¸ÅÂÊP£»
£¨2£©´Ó¸Ãµ¥Î»ÈÎÑ¡Á½ÃûÖ°¹¤£¬ÓæαíʾÕâÁ½ÈËÐÝÄê¼Ù´ÎÊýÖ®²îµÄ¾ø¶ÔÖµ£¬ÇóËæ»ú±äÁ¿¦ÎµÄ·Ö²¼Áм°ÊýѧÆÚÍûE¦Î£®
¿¼µã£ºÀëÉ¢ÐÍËæ»ú±äÁ¿µÄÆÚÍûÓë·½²î
רÌ⣺¸ÅÂÊÓëͳ¼Æ
·ÖÎö£º£¨1£©µ±¦Ç=4ʱ£¬ÀûÓû¥À©Ê¼þ¸ÅÂʼӷ¨¹«Ê½ÄÜÇó³öʼþA·¢ÉúµÄ¸ÅÂÊ£®
£¨2£©´Ó¸Ãµ¥Î»ÈÎÑ¡Á½ÃûÖ°¹¤£¬ÓæαíʾÕâÁ½ÈËÐÝÄê¼Ù´ÎÊýÖ®²îµÄ¾ø¶ÔÖµ£¬Ôò¦ÎµÄ¿ÉÄÜȡֵ·Ö±ðÊÇ0£¬1£¬2£¬3£¬·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³öËæ»ú±äÁ¿¦ÎµÄ·Ö²¼Áм°ÊýѧÆÚÍûE¦Î£®
½â´ð£º ½â£º£¨1£©µ±¦Ç=4ʱ£¬Ê¼þA·¢ÉúµÄ¸ÅÂÊ£º
P(A)=
C
2
20
+
C
1
10
C
1
15
C
2
50
=
68
245
£®£¨6·Ö£©
£¨2£©´Ó¸Ãµ¥Î»ÈÎÑ¡Á½ÃûÖ°¹¤£¬ÓæαíʾÕâÁ½ÈËÐÝÄê¼Ù´ÎÊýÖ®²îµÄ¾ø¶ÔÖµ£¬
Ôò¦ÎµÄ¿ÉÄÜȡֵ·Ö±ðÊÇ0£¬1£¬2£¬3£¬£¨7·Ö£©
ÓÚÊÇP(¦Î=0)=
C
2
5
+
C
2
10
+
C
2
20
+
C
2
15
C
2
50
=
2
7
£¬
P(¦Î=1)=
C
1
5
C
1
10
+
C
1
10
C
1
20
+
C
1
15
C
1
20
C
2
50
=
22
49
£¬
P(¦Î=2)=
C
1
5
C
1
20
+
C
1
10
C
1
15
C
2
50
=
10
49
£¬
P(¦Î=3)=
C
1
5
C
1
15
C
2
50
=
3
49
£¨10·Ö£©
´Ó¶ø¦ÎµÄ·Ö²¼ÁУº
¦Î0123
P
2
7
22
49
10
49
3
49
¦ÎµÄÊýѧÆÚÍû£ºE¦Î=0¡Á
2
7
+1¡Á
22
49
+2¡Á
10
49
+3¡Á
3
49
=
51
49
£®£¨12·Ö£©
µãÆÀ£º±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁкÍÊýѧÆÚÍûµÄÇ󷨣¬½âÌâʱҪÈÏÕæÉóÌ⣬ÊÇÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=x3-ax2+bx+cµÄͼÏóΪÇúÏßE£®
£¨1£©ÈôÇúÏßEÉÏ´æÔÚµãP£¬Ê¹ÇúÏßEÔÚPµã´¦µÄÇÐÏßÓëxÖáÆ½ÐУ¬Çóa£¬bµÄ¹ØÏµ£»
£¨2£©Èôº¯Êýf£¨x£©¿ÉÒÔÔÚx=-1ºÍx=3ʱȡµÃ¼«Öµ£¬Çó´Ëʱa£¬bµÄÖµ£»
£¨3£©ÔÚÂú×㣨2£©µÄÌõ¼þÏ£¬Éèx1£¬x2¡Ê[-2£¬6]£¬ÇóÖ¤£º|f£¨x1£©-f£¨x2£©|¡Ü81ºã³ÉÁ¢£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÔÚ¡÷ABCÖУ¬AB=4cm£¬AC=3cm£¬½Çƽ·ÖÏßAD=2cm£¬Çó´ËÈý½ÇÐÎÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

˵³öÏÂÁÐÈýÊÓͼ±íʾµÄ¼¸ºÎÌ壺£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÊýÁÐ{an}ΪµÈ²îÊýÁУ¬Ê×ÏîΪ3ÇÒa1+a2+a3=15£¬ÊýÁÐ{bn}µÄǰnÏîºÍΪSn£¬b1=1£¬bn+1=2Sn+1£¬£¨n¡ÊN+£©
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ
£¨2£©ÇóÊýÁÐ{bn}µÄͨÏʽ
£¨3£©Éècn=anbn£¬Çó{cn}µÄǰnÏîºÍTn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÊýÁÐ{an}µÄÊ×Ïîa1=
1
4
£¬ÇÒ2an=2an-1+1£¨n¡Ý2£¬n¡ÊN*£©£®ÊýÁÐ{bn}Âú×ãb1=
3
4
£¬ÇÒ3bn-bn-1=n£¨n¡Ý2£¬n¡ÊN*£©£®
£¨1£©ÇóÖ¤£ºÊýÁÐ{bn-an}ÊǵȱÈÊýÁУ»
£¨2£©ÇóÊýÁÐ{bn}µÄͨÏʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªº¯Êýf£¨x£©=
x2+1(x¡Ü0)
-2x(x£¾0)
£¬Çóʹº¯ÊýֵΪ10µÄxµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

µÈ²îÊýÁÐ{an}£¬{bn}£¬{cn}Óë{dn}µÄǰnÏîºÍ·Ö±ð¼ÇΪSn£¬Tn£¬Pn£¬Qn.
Sn
Tn
=
5n+1
3n-1
£¬f(n)=
an
bn
£»
cn
dn
=
5n-2
3n-2
£¬g(n)=
Pn
Qn
£®Ôò
f(n)
g(n)
µÄ×îСֵ=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èô¦ÂµÄÖÕ±ßËùÔÚÖ±Ïß¾­¹ýµãP£¨cos
3¦Ð
4
£¬sin
3¦Ð
4
£©£¬Ôòsin¦Â=
 
tan¦Â=
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸