精英家教网 > 高中数学 > 题目详情
13.设数列{an}的n项和为Sn,且a1=a2=1,{nSn+(n+2)an}为等差数列,则{an}的通项公式an=$\frac{n}{{2}^{n-1}}$.

分析 令bn=nSn+(n+2)an,由已知得b1=4,b2=8,从而bn=nSn+(n+2)an=4n,进一步得到{$\frac{{a}_{n}}{n}$}是以$\frac{1}{2}$为公比,1为首项的等比数列,由此能求出{an}的通项公式.

解答 解:设bn=nSn+(n+2)an
∵数列{an}的前n项和为Sn,且a1=a2=1,
∴b1=4,b2=8,
∴bn=b1+(n-1)×(8-4)=4n,
即bn=nSn+(n+2)an=4n
当n≥2时,Sn-Sn-1+(1+$\frac{2}{n}$)an-(1+$\frac{2}{n-1}$)an-1=0
∴$\frac{2(n+1)}{n}{a}_{n}$=$\frac{n+1}{n-1}{a}_{n-1}$,
即2•$\frac{{a}_{n}}{n}=\frac{{a}_{n-1}}{n-1}$,
∴{$\frac{{a}_{n}}{n}$}是以$\frac{1}{2}$为公比,1为首项的等比数列,
∴$\frac{{a}_{n}}{n}$=$(\frac{1}{2})^{n-1}$,
∴${a}_{n}=\frac{n}{{2}^{n-1}}$.

点评 本题考查数列的通项公式的求法,考查等差数列的性质,解答的关键是注意构造法和等差数列、等比数列的性质的合理运用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源:2017届江西省红色七校高三上学期联考一数学(理)试卷(解析版) 题型:选择题

正方体的棱长为,半径为的圆在平面内,其圆心为正方形的中心, 为圆上有一个动点,则多面体的外接球的表面积为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知实数a,b,c依次成递增等差数列,且a+b+c=12,而a,b,c+2又成等比数列,则a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.用定积分的几何意义说明下列等式:
(1)${∫}_{-\frac{π}{2}}^{\frac{π}{2}}$cosθdθ=2${∫}_{0}^{\frac{π}{2}}$cosθdθ;
(2)${∫}_{π}^{π}$sinxdx=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,PA与圆O相切于A,不过圆心O的割线PCB与直径AE相交于D点.已知∠BPA=30°,AD=2,PC=1,则圆O的半径等于7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知直线l:$\left\{\begin{array}{l}{x=m+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数,α≠kπ,k∈Z)经过椭圆C:$\left\{\begin{array}{l}{x=2cosφ}\\{y=\sqrt{3}sinφ}\end{array}\right.$(φ为参数)的左焦点F.(1)求m的值;
(2)设直线l与椭圆C交于A,B两点,求|FA|•|FB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知数列{an}满足a1=2,an+1=$\frac{1+{a}_{n}}{1-{a}_{n}}$(n∈N+),则a1+a2+a3+…+a2015的值为$-\frac{1765}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知g(x)是定义在R上的奇函数,且当x<0时,g(x)=-ln(1-x),函数f(x)=$\left\{\begin{array}{l}{{x}^{3},x≤0}\\{g(x),x>0}\end{array}\right.$,若f(2-x2)>f(x),则x的取值范围是(  )
A.(-∞,-2)∪(1,+∞)B.(-∞,1)∪(2,+∞)C.(-2,1)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.数列{an}满足an+1=$\frac{1}{{1-a}_{n}}$,a8=2,则a1=$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案