18£®ÒÑÖªÖ±Ïßl£º$\left\{\begin{array}{l}{x=m+tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$£¨tΪ²ÎÊý£¬¦Á¡Ùk¦Ð£¬k¡ÊZ£©¾­¹ýÍÖÔ²C£º$\left\{\begin{array}{l}{x=2cos¦Õ}\\{y=\sqrt{3}sin¦Õ}\end{array}\right.$£¨¦ÕΪ²ÎÊý£©µÄ×ó½¹µãF£®£¨1£©ÇómµÄÖµ£»
£¨2£©ÉèÖ±ÏßlÓëÍÖÔ²C½»ÓÚA£¬BÁ½µã£¬Çó|FA|•|FB|µÄ×îСֵ£®

·ÖÎö £¨1£©Ê×ÏȰѲÎÊý·½³Ìת»¯³ÉÖ±½Ç×ø±ê·½³Ì£¬½øÒ»²½ÀûÓõãµÄ×ø±êÇó³ömµÄÖµ£®
£¨2£©ÀûÓã¨1£©µÄ½áÂÛ£¬½øÒ»²½½¨Á¢Ò»²ÎÊýΪ±äÁ¿µÄÒ»Ôª¶þ´Î·½³Ì£¬½øÒ»²½¸ù¾Ý¸ùºÍϵÊýµÄ¹ØÏµÇó³öº¯ÊýµÄ¹ØÏµÊ½£¬ÔÙÀûÓú¯ÊýµÄÖµÓòÇó³ö½á¹û£®

½â´ð ½â£º£¨1£©¡ßÍÖÔ²C£º$\left\{\begin{array}{l}x=2cosϕ\\ y=\sqrt{3}sinϕ\end{array}\right.$£¨¦ÕΪ²ÎÊý£©µÄÆÕͨ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$£¬·½³ÌµÄ×ó½¹µãΪF£¬
¡àF£¨-1£¬0£©£®                                   
¡ßÖ±Ïßl£º$\left\{\begin{array}{l}{x=m+tcos¦Á}\\{y=tsin¦Á}\end{array}\right.$£¨tΪ²ÎÊý£¬¦Á¡Ùk¦Ð£¬k¡ÊZ£©µÄÆÕͨ·½³ÌΪ£ºy=tan¦Á£¨x-m£©£®
¡ß¦Á¡Ùk¦Ð£¬k¡ÊZ£¬
¡àtan¦Á¡Ù0                           
¡ßÖ±Ïß¾­¹ýµãF£¬
ËùÒÔ£º0=tan¦Á£¨-1-m£©£¬½âµÃ£ºm=-1£®
£¨2£©½«Ö±ÏߵIJÎÊý·½³Ì$\left\{\begin{array}{l}x=-1+tcos¦Á\\ y=tsin¦Á\end{array}\right.$£¨tΪ²ÎÊý£©´úÈëÍÖÔ²CµÄÆÕͨ·½³Ì$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$²¢ÕûÀíµÃ£º
£¨3cos2¦Á+4sin2¦Á£©t2-6tcos¦Á-9=0£®
ÉèµãA¡¢BÔÚÖ±Ïß²ÎÊý·½³ÌÖжÔÓ¦µÄ²ÎÊý·Ö±ðΪt1ºÍt2£¬
Ôò|FA|¡Á|FB|=|t1t2|
=$\frac{9}{3{cos}^{2}¦Á+4{sin}^{2}¦Á}$
=$\frac{9}{3+{sin}^{2}¦Á}$£¬
µ±sin¦Á=¡À1ʱ£¬|FA|¡Á|FB|µÄ×îСֵΪ$\frac{9}{4}$£®

µãÆÀ ±¾Ì⿼²éµÄ֪ʶҪµã£º²ÎÊý·½³ÌºÍÖ±½Ç×ø±ê·½³ÌµÄ»¥»¯£¬¼°²ÎÊý·½³ÌµÄÓ¦Ó㬸ùºÍϵÊýµÄ¹ØÏµµÄÓ¦Óã¬Èý½Çº¯ÊýµÄ×îÖµÎÊÌâµÄÓ¦Óã¬Ö÷Òª¿¼²ìѧÉúÔËËãÄÜÁ¦ºÍ¶ÔÊýÐνáºÏµÄÀí½âÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2017½ì½­Î÷Ê¡ºìÉ«ÆßУ¸ßÈýÉÏѧÆÚÁª¿¼Ò»Êýѧ£¨Àí£©ÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ

ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨ £©

A£®£¬¡°¡±ÊÇ¡°¡±µÄ±ØÒª²»³ä·ÖÌõ¼þ

B£®¡°ÎªÕæÃüÌ⡱ÊÇ¡°ÎªÕæÃüÌ⡱µÄ±ØÒª²»³ä·ÖÌõ¼þ

C£®ÃüÌâ¡°£¬Ê¹µÃ¡±µÄ·ñ¶¨ÊÇ£º¡°£¬¡±

D£®ÃüÌ⣺¡°£¬¡±£¬ÔòÊÇÕæÃüÌâ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®Ò»¸öÕýÈýÀâÖùµÄ²àÀâ´¹Ö±ÓÚµ×Ãæ£¬ÇÒ´æÔÚÄÚÇÐÇò£¬Ôò¸ÃÈýÀâÖùµÄÍâ½ÓÇòÓëÄÚÇÐÇòµÄ±íÃæ»ýÖ®±ÈΪ5£º1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÑ֪ijÈýÀâ×¶µÄÈýÊÓͼ¾ùΪÑü³¤Îª2µÄµÈÑüÖ±½ÇÈý½ÇÐΣ¨Èçͼ£©£¬Ôò¸ÃÀâ×¶µÄÍâ½ÓÇòµÄ°ë¾¶ÊÇ£¨¡¡¡¡£©
A£®$\frac{\sqrt{3}}{2}$B£®$\sqrt{3}$C£®2D£®2$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÉèÊýÁÐ{an}µÄnÏîºÍΪSn£¬ÇÒa1=a2=1£¬{nSn+£¨n+2£©an}ΪµÈ²îÊýÁУ¬Ôò{an}µÄͨÏʽan=$\frac{n}{{2}^{n-1}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªÊýÁÐ{an}£¬Ôò¡°an£¬an+1£¬an+2£¬£¨n¡ÊN*£©¡±³ÉµÈ±ÈÊýÁÐÊÇ¡°an+12=anan+2¡±µÄ£¨¡¡¡¡£©
A£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þB£®³ä·Ö²»±ØÒªÌõ¼þ
C£®±ØÒª²»³ä·ÖÌõ¼þD£®³äÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Èçͼ£¬´ÓÔ²OÍâÒ»µãPÒýÔ²µÄÇÐÏßPC¼°¸îÏßPAB£¬CΪÇе㣮ÇóÖ¤£ºAP•BC=AC•CP£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÉèÈñ½ÇÈý½ÇÐÎABCµÄÈý¸öÄÚ½ÇA¡¢B¡¢CËù¶ÔÓ¦µÄ±ß·Ö±ðΪa¡¢b¡¢c£¬Èôa=2£¬B=2A£¬ÔòbµÄȡֵ·¶Î§Îª£¨2$\sqrt{2}$£¬2$\sqrt{3}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Éèn¡ÊN*£¬º¯Êý$f£¨x£©=\frac{lnx}{x^n}$£¬º¯Êý$g£¨x£©=\frac{e^x}{x^n}$£¬x¡Ê£¨0£¬+¡Þ£©£®
£¨¢ñ£©ÅжϺ¯Êýf£¨x£©ÔÚÇø¼ä£¨0£¬+¡Þ£©ÉÏÊÇ·ñΪµ¥µ÷º¯Êý£¬²¢ËµÃ÷ÀíÓÉ£»
£¨¢ò£©Èôµ±n=1ʱ£¬¶ÔÈÎÒâµÄx1£¬x2¡Ê£¨0£¬+¡Þ£©£¬¶¼ÓÐf£¨x1£©¡Üt¡Üg£¨x2£©³ÉÁ¢£¬ÇóʵÊýtµÄȡֵ·¶Î§£»
£¨¢ó£©µ±n£¾2ʱ£¬Èô´æÔÚÖ±Ïßl£ºy=t£¨t¡ÊR£©£¬Ê¹µÃÇúÏßy=f£¨x£©ÓëÇúÏßy=g£¨x£©·Ö±ðλÓÚÖ±ÏßlµÄÁ½²à£¬Ð´³önµÄËùÓпÉÄÜȡֵ£®£¨Ö»Ðèд³ö½áÂÛ£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸