精英家教网 > 高中数学 > 题目详情
17.化简:$\frac{(1+sinx+cosx)(sin\frac{x}{2}-cos\frac{x}{2})}{\sqrt{2+2cosx}}$(180°<x<360°).

分析 首先根据已知条件求出$90°<\frac{x}{2}<180°$,进一步对函数的关系式进行恒等变换利用关系式对函数进行化简求出结果.

解答 解:因为:180°<x<360°
所以:$90°<\frac{x}{2}<180°$
则:$\frac{(1+sinx+cosx)(sin\frac{x}{2}-cos\frac{x}{2})}{\sqrt{2+2cosx}}$
=$\frac{(2sin\frac{x}{2}cos\frac{x}{2}+2{cos}^{2}\frac{x}{2})(sin\frac{x}{2}-cos\frac{x}{2})}{\sqrt{4{cos}^{2}\frac{x}{2}}}$
=$\frac{2cos\frac{x}{2}{(sin}^{2}\frac{x}{2}-{cos}^{2}\frac{x}{2})}{-2cos\frac{x}{2}}$
=cosx

点评 本题考查的知识要点:三角函数的化简,三角函数关系式应用问题.主要考查学生对三角函数关系式的灵活的应用能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.数列{an}的前n项和记为Sn,对任意的正整数n,均有4Sn=(an+1)2,且an>0.
(1)求a1及{an}的通项公式;
(2)令b${\;}_{n}=(-1)^{n-1}\frac{4n}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若函数$f(x)={x^2}+{x^{\frac{2}{3}}}$-4的零点m∈(a,a+1),a为整数,则所以满足条件a的值为a=1或a=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,若AC=5,∠A=120°,三角形的面积$\frac{15\sqrt{3}}{4}$,则BC的长度为7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设O为坐标原点,点$A({\frac{1}{4},1}),若M({x,y})$满足不等式组$\left\{\begin{array}{l}x+y≥2\\ x≤1\\ y≤2\end{array}\right.,则\overrightarrow{OM}•\overrightarrow{OA}$的最小值是$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=asinωxcosωx+$\sqrt{3}$cos2ωx(a>0,ω>0)的最小正周期为$\frac{π}{2}$,最小值为-$\frac{\sqrt{3}}{2}$,将函数f(x)的图象向左平移φ(φ>0)个单位后,得到的函数图象的一条对称轴为x=$\frac{π}{8}$,则φ的值不可能为(  )
A.$\frac{5π}{24}$B.$\frac{13π}{24}$C.$\frac{17π}{24}$D.$\frac{23π}{24}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.(1+$\frac{1}{{x}^{2}}$)(x+$\frac{1}{x}$)6展开式中的常数项为(  )
A.35B.30C.20D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.汽车以速度v做匀速直线运动,经过时间t所行驶的路程s=vt,如果汽车做变速直线运动,在时刻t的速度为v(t)=-t2+2(单位:km/h),那么它在0≤t≤1(单位:h)这段时间内行驶的路程s(单位:km)是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知a,b,c为△ABC中角A,B,C的对边,且a2-a-2b-2c=0,a+2b-2c+3=0,判断△ABC的形状.

查看答案和解析>>

同步练习册答案