精英家教网 > 高中数学 > 题目详情
已知等差数列{an}的公差不为零,a1=25且a1、a11、a13成等比数列.
(Ⅰ)求{an}的通项公式;
(Ⅱ)若a1+a3+a5+…+a2n-1=70,求n的值.
考点:数列的求和
专题:等差数列与等比数列
分析:(Ⅰ)由已知条件利用等差数列的通项公式和等比数列的性质求出公差,由此能求出an=-2n+27.
(Ⅱ)由an=-2n+27,得{a2n-1}是首项为a1=25,公差为d=-4的等差数列,所以a1+a3+…+a2n-1=27n-2n2,由此根据a1+a3+a5+…+a2n-1=70,得27n-2n2=70,从而能求出n的值.
解答: 解:(Ⅰ)设{an}的公差为d,由题意得a112=a1a13
(a1+10d)2=a1(a1+12d)
∵a1=25,∴d=0(舍),或d=-2,
∴an=25+(n-1)×(-2)=-2n+27.
(Ⅱ)∵an=-2n+27,
∴a2n-1=-2(2n-1)+27=-4n+29,
∴{a2n-1}是首项为a1=25,公差为d=-4的等差数列,
∴a1+a3+…+a2n-1
=
n
2
(a1+a2n-1)

=27n-2n2
∵a1+a3+a5+…+a2n-1=70,
∴27n-2n2=70,
解得n=10或n=
7
2
(舍),
∴n=10.
点评:本题考查数列的通项公式的求法,考查数列的项数n的求法,解题时要认真审题,注意等差数列的性质的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2.将△ABD沿边AB折起,使得△ABD与△ABC成直二面角D-AB-C,如图二,在二面角D-AB-C中.
(1)求证:BD⊥AC;
(2)求D、C之间的距离;
(3)求DC与面ABD所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若二阶矩阵M满足:M
12
34
=
58
46

(Ⅰ)求二阶矩阵M;
(Ⅱ)若曲线C:x2+2xy+2y2=1在矩阵M所对应的变换作用下得到曲线C′,求曲线C′的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
ax+2
(x∈R,a为常数),P1(x1,y1),P2(x2,y2)是函数y=f(x)图象上的两点.当线段P1P2的中点P的横坐标为
1
2
时,P的纵坐标恒为
1
4

(1)求y=f(x)的解析式;
(2)若数列{an}的通项公式为an=f(
n
n0
)(n0∈N*,n=1,2,…,n),求数列{an}的前n0和Sn0

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面是矩形,侧面PAD⊥底面ABCD,在△PAD中
PA
+
PD
=2
PE
,且AD=2PE.
(1)求证:平面PAB⊥平面PCD;
(2)如果AB=BC,∠PAD=60°,求DC与平面PBE的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)是定义在R上的奇函数,且对任意实数x,都有f(x+2)=-f(x),当x∈[0,2]时,f(x)=2x-x2
(1)求证:f(x)是周期函数,并求出最小正周期;
(2)当x∈[2,4]时,求f(x)解析式;
(3)求f(0)+f(1)+f(2)+…+f(2012)值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是等差数列,{bn}是等比数列,且a1=11,b1=1,a2+b2=11,a3+b3=11.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)求数列{|an-bn|}的前n项的和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x(ex-1)-
1
2
x2,求函数f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在底面边长为a的正方形的四棱锥P-ABCD中,已知PA⊥平面AC,且PA=a,则直线PB与平面PCD所成的角大小为
 

查看答案和解析>>

同步练习册答案