精英家教网 > 高中数学 > 题目详情
如图一,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2.将△ABD沿边AB折起,使得△ABD与△ABC成直二面角D-AB-C,如图二,在二面角D-AB-C中.
(1)求证:BD⊥AC;
(2)求D、C之间的距离;
(3)求DC与面ABD所成的角的正弦值.
考点:直线与平面所成的角,点、线、面间的距离计算
专题:综合题,空间位置关系与距离,空间角
分析:(1)证明BD⊥面ABC,即可证明BD⊥AC;
(2)依题意建立空间直角坐标系使得△ABC在yoz平面上,由已知条件分别求出点C和点D的空间坐标,利用空间两点间的距离公式能求出D、C之间的距离.
(3)由题设取AB的中点H,连结CH、DH和DC,证明∠CDH为直线DC与面ABD所成的角,即可求出CD与平面ABD所成的角.
解答: (1)证明:∵面ABD⊥面ABC,面ABD∩面ABC=AB,BD?面ABD,BD⊥AB,
∴BD⊥面ABC,
又∵AC?面ABC,∴BD⊥AC…(4分)
(2)解:∵BD⊥面ABC,BC?面ABC,
∴BD⊥BC
在Rt△DBC中,BC=BA=2,BD=2,∴DC=
DB2+BC2
=
22+22
=2
2
…(8分)
(3)解:取AB的中点H,连结CH、DH和DC,则
∵△ABC是正三角形,∴CH⊥AB,
又∵面ABD⊥面ABC,∴CH⊥面ABD,即DH是DC在面ABD内的射影
则∠CDH为直线DC与面ABD所成的角                          …(10分)
CH=
3
2
BC=
3
DC=2
2

sin∠CDH=
CH
DC
=
6
4

故直线DC与面ABD所成的角的正弦值为
6
4
.…(12分)
点评:本题考查线面垂直的证明,考查空间两点间的距离的求法,考查直线与平面所成角的大小的求法,正确运用线面垂直的判定定理是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线C:
y2
a2
-
x2
b2
=1(a>0,b>0)的一条渐近方程为y=
1
2
x,则C的离心率为(  )
A、
5
2
B、
5
C、
3
2
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一圆的方程式为x2+y2=v2t2,将该圆向下移动
1
2
gt2个单位,求移动后圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an},{bn}满足a1=
2
3
,an+1=
2an
an+2
,b1+2b2+22b3+…+2n-1bn=n(n∈N*).
(1)求数列{an}和{bn}的通项公式;
(2)设数列{
bn
an
}的前n项和Tn,问是否存在正整数m、M且M-m=3,使得m<Tn<M对一切n∈N*恒成立?若存在,求出m、M的值;若不存在,请说明理由;
(3)设cn=
(anan+2)2
an+1
,求证:c1+c2+c3+…+cn
25
72

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)是定义在(0,+∞)上的函数,并且满足下面三个条件:
①对任意正数x,y,都有f(xy)=f(x)+f(y);
②当x>1时,f(x)<0;
③f(3)=-1.
(Ⅰ)求f(1)、f(
1
9
)的值;
(Ⅱ)证明:f(x)在(0,+∞)上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

某生物技术公司研制出一种治疗乙肝的新药,为测试该药的有效性(若该药有效的概率小于90%,则认为测试没有通过),公司在医院选定了2000个乙肝患者作为样本分成三组,测试结果如下表:
A组B组C组
新药有效673xy
新药无效7790z
已知在全体样本中随机抽取1个,抽到B组新药有效的概率是0.33.
(1)求x的值;
(2)已知y≥465,z≥30,求不能通过测试的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=|x2-2|x||,求当x∈(-2,2)时函数的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正方形ABCD和矩形BDFE所在的平面互相垂直,AC交BD于O点,M为EF的中点,BC=
2
,BF=1
(Ⅰ)求证:BC⊥AF:
(Ⅱ)求证:BM∥平面ACE;
(Ⅲ)求二面角B-AF-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的公差不为零,a1=25且a1、a11、a13成等比数列.
(Ⅰ)求{an}的通项公式;
(Ⅱ)若a1+a3+a5+…+a2n-1=70,求n的值.

查看答案和解析>>

同步练习册答案