精英家教网 > 高中数学 > 题目详情
设函数f(x)是定义在R上的奇函数,且对任意实数x,都有f(x+2)=-f(x),当x∈[0,2]时,f(x)=2x-x2
(1)求证:f(x)是周期函数,并求出最小正周期;
(2)当x∈[2,4]时,求f(x)解析式;
(3)求f(0)+f(1)+f(2)+…+f(2012)值.
考点:抽象函数及其应用
专题:函数的性质及应用
分析:(1)利用函数周期性的定义证明f(x+4)=f(x).
(2)令x∈[-2,0],则-x∈[0,2],求出f(x),再根据函数的周期性,求出答案.
(3)分别求出f(0)=0,f(1)=1,f(2)=0,f(3)=-1,f(4)=0,求出f(1)+f(2)+f(3)+f(4)=0,再根据函数f(x)是周期函数,且T=4是其一个周期.继而求出答案.
解答: (1)证明∵f(-x)=-f(x),f(x+2)=-f(x),
∴f(x+4)=f[(x+2)+2]=-f(x+2)=f(x),
∴y=f(x)是周期函数,且T=4是其一个周期.
(2)令x∈[-2,0],则-x∈[0,2],
∴f(-x)=-2x-x2
又f(-x)=-f(x),
∴在x∈[-2,0],f(x)=2x+x2
∴x∈[2,4],那么x-4∈[-2,0],那么f(x-4)=2(x-4)+(x-4)2=x2-6x+8,
由于f(x)的周期是4,所以f(x)=f(x-4)=x2-6x+8,
∴当x∈[2,4]时,f(x)=x2-6x+8,
(3)当x∈[0,2]时,f(x)=2x-x2
∴f(0)=0,f(1)=1,
当x∈[2,4]时,f(x)=x2-6x+8,
∴f(2)=0,f(3)=-1,f(4)=0
∴f(1)+f(2)+f(3)+f(4)=1+0-1+0=0,
∵,y=f(x)是周期函数,且T=4是其一个周期.
∴2012÷4=503
∴f(0)+f(1)+f(2)+…+f(2012)=f(0)+503×0=0+0=0.
点评:本题主要考查函数周期性,奇偶性的应用,要求熟练掌握函数性质的综合应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某生物技术公司研制出一种治疗乙肝的新药,为测试该药的有效性(若该药有效的概率小于90%,则认为测试没有通过),公司在医院选定了2000个乙肝患者作为样本分成三组,测试结果如下表:
A组B组C组
新药有效673xy
新药无效7790z
已知在全体样本中随机抽取1个,抽到B组新药有效的概率是0.33.
(1)求x的值;
(2)已知y≥465,z≥30,求不能通过测试的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

计算:
(1)sin
25π
6
+cos
26π
3
+tan(-
25π
4
);
(2)7log72-(2014)0-(3
3
8
)-
2
3
-log3
427

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x2+a(x+lnx)的图象都在第一象限,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的公差不为零,a1=25且a1、a11、a13成等比数列.
(Ⅰ)求{an}的通项公式;
(Ⅱ)若a1+a3+a5+…+a2n-1=70,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,平行四边形ABCD中,∠DAB=60°,AB=2,AD=4,将△CBD沿BD折起到△EBD的位置,使平面EBD⊥平面ABD.
(Ⅰ)求证:AB⊥DE;
(Ⅱ)若点F为BE的中点,求直线AF与平面ADE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ex-ax-2,其导函数为f′(x).
(1)若a=1,求函数f(x)在点(0,f(0))处的切线方程;
(2)求f(x)的单调区间;
(3)若k为整数,若x>0时,k<
x+1
ex-1
+x恒成立,试求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知关于x的不等式:|2x-m|≤1的整数解有且仅有一个值为2.
(Ⅰ)求整数m的值;
(Ⅱ)已知a,b,c∈R,若4a4+4b4+4c4=m,求a2+b2+c2的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

以Rt△ABC的直角边AB为直径作圆O,圆O与斜边AC交于D,过D作圆O的切线与BC交于E,若BC=6,AB=8,则OE=
 

查看答案和解析>>

同步练习册答案