| A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
分析 通过向量的数量积的定义,设出向量的坐标,利用向量的坐标运算和向量的模的公式及几何意义,结合圆的方程即可得出最大值为圆的直径.
解答 解:由平面向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{1}{2}$,
可得|$\overrightarrow{a}$|•|$\overrightarrow{b}$|•cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=1•1•cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{1}{2}$,
由0≤<$\overrightarrow{a}$,$\overrightarrow{b}$>≤π,可得<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{π}{3}$,
设$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),$\overrightarrow{c}$=(x,y),
则|$\overrightarrow{a}$-$\overrightarrow{b}$+$\overrightarrow{c}$|≤1,即有|($\frac{1}{2}$+x,y-$\frac{\sqrt{3}}{2}$)|≤1,
即为(x+$\frac{1}{2}$)2+(y-$\frac{\sqrt{3}}{2}$)2≤1,
故|$\overrightarrow{a}$-$\overrightarrow{b}$+$\overrightarrow{c}$|≤1的几何意义是在以(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$)为圆心,半径等于1的圆上
和圆内部分,
|$\overrightarrow{c}$|的几何意义是表示向量$\overrightarrow{c}$的终点与原点的距离,而原点在圆上,
则最大值为圆的直径,即为2.
故选:D.
点评 本题主要考查两个向量的数量积的运算,熟练掌握向量的坐标运算和圆的方程及数形结合是解题的关键,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2n | B. | 2n-1 | C. | 2n-1 | D. | 2n-1-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | EF至多与A1D、AC之一垂直 | B. | EF与A1D、AC都垂直 | ||
| C. | EF与BD1相交 | D. | EF与BD1异面 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com