精英家教网 > 高中数学 > 题目详情
7.已知α∈R,则“cosα=-$\frac{\sqrt{3}}{2}$”是“α=2kπ+$\frac{5π}{6}$,k∈Z”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

分析 cosα=-$\frac{\sqrt{3}}{2}$,解得α=2kπ±$\frac{5π}{6}$,k∈Z,即可判断出结论.

解答 解:cosα=-$\frac{\sqrt{3}}{2}$,解得α=2kπ±$\frac{5π}{6}$,k∈Z,
∴“cosα=-$\frac{\sqrt{3}}{2}$”是“α=2kπ+$\frac{5π}{6}$,k∈Z”的必要但充分条件.
故选:B.

点评 本题考查了三角函数求值、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知M是面积为1的△ABC内的一点(不含边界),若△MBC,△MCA和△MAB的面积分别为x,y,z,则$\frac{1}{x+y}$+$\frac{x+y}{z}$的最小值是(  )
A.2B.3C.3.5D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知实数x,y满足$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{\frac{x}{3}+\frac{y}{4}≤1}\end{array}\right.$,则x-2y的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设一圆锥的外接球与内切球的球心位置相同,且外接球的半径为2,则该圆锥的体积为(  )
A.πB.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知关于x的不等式|x+3|+|x+m|≥2m的解集为R.
(1)求m的最大值;
(2)已知a>0,b>0,c>0,且a+b+c=1,求2a2+3b2+4c2的最小值及此时a,b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知平面向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{1}{2}$,若向量$\overrightarrow{c}$满足|$\overrightarrow{a}$-$\overrightarrow{b}$+$\overrightarrow{c}$|≤1,则|$\overrightarrow{c}$|的最大值为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,已知三棱锥A-BCD的所有棱长均相等,点E满足$\overrightarrow{DE}$=3$\overrightarrow{EC}$,点P在棱AC上运动,设EP与平面BCD所成角为θ,则sinθ的最大值为$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=|x-$\frac{1}{a}$|+|x+2a|(a∈R,且a≠0)
(Ⅰ)当a=-1时,求不等式f(x)≥5的解集;
(Ⅱ)证明:f(x)≥2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.与函数f(x)=2x的图象关于直线y=x对称的曲线C对应的函数为g(x),则函数$y=g({\frac{1}{x}})•g({4x})({\frac{1}{8}≤x≤4})$的值域为[-8,1].

查看答案和解析>>

同步练习册答案