精英家教网 > 高中数学 > 题目详情
17.已知M是面积为1的△ABC内的一点(不含边界),若△MBC,△MCA和△MAB的面积分别为x,y,z,则$\frac{1}{x+y}$+$\frac{x+y}{z}$的最小值是(  )
A.2B.3C.3.5D.4

分析 由已知可得,x+y+z=1,再利用“乘1法”与基本不等式的性质即可得出.

解答 解:由已知可得,x+y+z=1,
∴$\frac{1}{x+y}$+$\frac{x+y}{z}$=$\frac{x+y+z}{x+y}$+$\frac{x+y}{z}$=1+$\frac{z}{x+y}$+$\frac{x+y}{z}$≥3.
故选:B.

点评 本题考查了“乘1法”与基本不等式的性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知F1、F2为椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1的左、右焦点,过F1且垂直于F1F2的直线交椭圆于A,B两点,则线段AB的长是$\frac{9}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知等比数列{an}的前n项和为Sn,且S4=a5-a1
(1)求数列{an}的公比q的值;
(2)记bn=log2an+1,数列{bn}的前n项和为Tn,若T4=2b5,求数列$\left\{{\frac{1}{{{b_n}{b_{n+1}}}}}\right\}$的前9项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.质检过后,某校为了解理科班学生的数学、物理学习情况,利用随机数表法从全年级600名理科生抽取100名学生的成绩进行统计分析,已知学生考号的后三位分别为000,001,002,…,599.
(1)若从随机数表的第5行第7列的数开始向右读,请依次写出抽取的前7人的后三位考号;
(2)如果题(1)中随机抽取到的7名同学的数学、物理成绩(单位:分)对应如表:
数学成绩9097105113127130135
物理成绩105116120127135130140
从这7名同学中随机抽取3名同学,记这3名同学中数学和物理成绩均为优秀的人数为ζ,求ζ的分布列和数学期望(规定成绩不低于120分的为优秀).附:(下面是摘自随机数表的第4行到第6行)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,一个顶点在抛物线x2=4y的准线上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设O为坐标原点,M,N为椭圆上的两个不同的动点,直线OM,ON的斜率分别为k1和k2,是否存在常数P,当k1k2=P时△MON的面积为定值;若存在,求出P的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设集合M={x|x2≤x},N={x|lgx≤0},则M∩N=(  )
A.[0,1]B.(0,1]C.[0,1)D.(-∞,1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知抛物线Γ:y2=2px上一点M(3,m)到焦点的距离为4,动直线y=kx(k≠0)交抛物线Γ于坐标原点O和点A,交抛物线Γ的准线于点B,若动点P满足$\overrightarrow{OP}=\overrightarrow{BA}$,动点P的轨迹C的方程为F(x,y)=0;
(1)求出抛物线Γ的标准方程;
(2)求动点P的轨迹方程F(x,y)=0;(不用指明范围)
(3)以下给出曲线C的四个方面的性质,请你选择其中的三个方面进行研究:①对称性;②图形范围;③渐近线;④y>0时,写出由F(x,y)=0确定的函数y=f(x)的单调区间,不需证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某省电视台为了解该省卫视一档成语类节目的收视情况,抽查东西两部各5个城市,得到观看该节目的人数(单位:千人)如下茎叶图所示其中一个数字被污损.
(1)求东部各城市观看该节目观众平均人数超过西部各城市观看该节目观众平均人数的概率.
(2)随着节目的播出,极大激发了观众对成语知识的学习积累的热情,从中获益匪浅,现从观看节目的观众中随机统计了4位观众的周均学习成语知识的时间(单位:小时)与年龄(单位:岁),并制作了对照表(如下表所示);
年龄x(岁) 20 30 40 50
 周均学习成语知识时间y(小时) 2.5 3 44.5
由表中数据,试求线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,并预测年龄为50岁观众周均学习成语知识时间.
参考公式:$\stackrel{∧}{b}$=$\frac{\sum_{i=i}^{m}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=i}^{n}{{x}^{2}}_{i}-n{x}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知α∈R,则“cosα=-$\frac{\sqrt{3}}{2}$”是“α=2kπ+$\frac{5π}{6}$,k∈Z”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案