精英家教网 > 高中数学 > 题目详情
4.设集合A={x|x2-3x<0},B={x|x2>4},则A∩B=(  )
A.(-2,0)B.(-2,3)C.(0,2)D.(2,3)

分析 分别求出关于A、B的不等式,求出A、B的交集即可.

解答 解:A={x|x2-3x<0}={x|0<x<3},
B={x|x2>4}={x|x>2或x<-2},
则A∩B={x|2<x<3},
故选:D.

点评 本题考查了集合的交集的运算,考查不等式问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图,已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左焦点F为抛物线y2=-4x的焦点,过点F做x轴的垂线交椭圆于A,B两点,且|AB|=3.
(1)求椭圆C的标准方程:
(2)若M,N为椭圆上异于点A的两点,且满足$\frac{{\overrightarrow{AM}•\overrightarrow{AF}}}{{\overrightarrow{|{AM}|}}}=\frac{{\overrightarrow{AN}•\overrightarrow{AF}}}{{\overrightarrow{|{AN}|}}}$,问直线MN的斜率是否为定值?若是,求出这个定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设一圆锥的外接球与内切球的球心位置相同,且外接球的半径为2,则该圆锥的体积为(  )
A.πB.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知平面向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,$\overrightarrow{a}$•$\overrightarrow{b}$=$\frac{1}{2}$,若向量$\overrightarrow{c}$满足|$\overrightarrow{a}$-$\overrightarrow{b}$+$\overrightarrow{c}$|≤1,则|$\overrightarrow{c}$|的最大值为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.如图,已知三棱锥A-BCD的所有棱长均相等,点E满足$\overrightarrow{DE}$=3$\overrightarrow{EC}$,点P在棱AC上运动,设EP与平面BCD所成角为θ,则sinθ的最大值为$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图所示是一个几何体的三视图,则这个几何体外接球的体积为(  )
A.36πB.$\frac{64\sqrt{2}}{3}$πC.8$\sqrt{6}$πD.$\frac{8}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=|x-$\frac{1}{a}$|+|x+2a|(a∈R,且a≠0)
(Ⅰ)当a=-1时,求不等式f(x)≥5的解集;
(Ⅱ)证明:f(x)≥2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.若函数f(x)=ax2+2x+blnx在x=1和x=2处取得极值,
(1)求a,b的值;
(2)求f(x)在$[\frac{1}{2},2]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.当0<a<1时,函数y=loga(x2-4x+3)的单调增区间为(  )
A.(-∞,2]B.[2,+∞)C.(-∞,1)D.(3,+∞)

查看答案和解析>>

同步练习册答案