精英家教网 > 高中数学 > 题目详情
1.在△ABC中,∠A=$\frac{3π}{4}$,AB=6,AC=3$\sqrt{2}$,点D在BC边上,AD=BD,求AD的长.

分析 由已知及余弦定理可解得BC的值,由正弦定理可求得sinB,从而可求cosB,过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,即可求得AD的长.

解答 解:∵∠A=$\frac{3π}{4}$,AB=6,AC=3$\sqrt{2}$,
∴在△ABC中,由余弦定理可得:BC2=AB2+AC2-2AB•ACcos∠BAC=90.
∴BC=3$\sqrt{10}$…4分
∵在△ABC中,由正弦定理可得:$\frac{AC}{sinB}=\frac{BC}{sin∠BAC}$,
∴sinB=$\frac{\sqrt{10}}{10}$,
∴cosB=$\frac{3\sqrt{10}}{10}$…8分
∵过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,
∴Rt△ADE中,AD=$\frac{AE}{cos∠DAE}$=$\frac{3}{cosB}$=$\sqrt{10}$…12分

点评 本题主要考查了正弦定理,余弦定理在解三角形中的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知f(x)=$\frac{3x}{x+3}$,数列{an}满足an=f(an-1)(n>1,n∈N*,a1≠0)
(1)求证:{$\frac{1}{{a}_{n}}$}是等差数列;
(2)若a1=$\frac{1}{4}$,求a40的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知△ABC中,a=3${\;}^{\frac{1}{2}}$,$\frac{b+c}{a}$=$\frac{2-cosB-cosC}{cosA}$,求三角形周长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数y=ax2+bx与y=ax+b(a≠0,b≠0)画在一坐标系中的图象只可能是②③.(填序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设p:1<x<2,q:2x>1,则p是q成立的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知等腰直角三角形的直角边的长为2,将该三角形绕其斜边所在的直线旋转一周而形成的曲面所围成的几何体的体积为(  )
A.$\frac{2\sqrt{2}π}{3}$B.$\frac{4\sqrt{2}π}{3}$C.2$\sqrt{2}$πD.4$\sqrt{2}$π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.观察下列各式:
C${\;}_{1}^{0}$=40
C${\;}_{3}^{0}$+C${\;}_{3}^{1}$=41
C${\;}_{5}^{0}$+C${\;}_{5}^{1}$+C${\;}_{5}^{2}$=42
C${\;}_{7}^{0}$+C${\;}_{7}^{1}$+C${\;}_{7}^{2}$+C${\;}_{7}^{3}$=43

照此规律,当n∈N*时,
C${\;}_{2n-1}^{0}$+C${\;}_{2n-1}^{1}$+C${\;}_{2n-1}^{2}$+…+C${\;}_{2n-1}^{n-1}$=4n-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若直线 l1和l2 是异面直线,l1在平面 α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是(  )
A.l与l1,l2都不相交B.l与l1,l2都相交
C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知x,y满足约束条件$\left\{\begin{array}{l}{x-y≥0}\\{x+y-4≤0}\\{y≥1}\end{array}\right.$,则z=-2x+y的最大值是(  )
A.-1B.-2C.-5D.1

查看答案和解析>>

同步练习册答案