精英家教网 > 高中数学 > 题目详情
等差数列中,,则前项的和(   )
A.B.C.D.
A

由已知,,所以,同理,可得,则.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知数列的前项和为,且满足
(Ⅰ)求, ,并猜想的表达式;
(Ⅱ)用数学归纳法证明所得的结论。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)已知数列的前n项和为,等差数列,且,又成等比数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)求数列的前n项和.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分15分)已知点(1,)是函数)的图象上一点,等比数列的前n项和为,数列的首项为c,且前n项和满足
=+(n2).
(Ⅰ)求数列的通项公式;
(Ⅱ)若数列{前n项和为,问>的最小正整数n是多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分18分;第(1)小题5分,第(2)小题5分,第(3)小题8分)
设数列是等差数列,且公差为,若数列中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.
(1)若,求证:该数列是“封闭数列”;
(2)试判断数列是否是“封闭数列”,为什么?
(3)设是数列的前项和,若公差,试问:是否存在这样的“封闭数列”,使;若存在,求的通项公式,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分16分)已知数列是公差为的等差数列,数列是公比为的(q∈R)的等比数列,若函数,且,,
(1)求数列的通项公式;
(2)设数列的前n项和为,对一切,都有成立,求

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分16分)设数列的前n项和为,数列满足: ,且数列的前
n项和为.
(1) 求的值;
(2) 求证:数列是等比数列;
(3) 抽去数列中的第1项,第4项,第7项,……,第3n-2项,……余下的项顺序不变,组成一个新数列,若的前n项和为,求证:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

从1=1,,…归纳出第个式子为_______________________.                 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

数列的前项和为(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案