精英家教网 > 高中数学 > 题目详情
20.已知e=2.71828…,设函数f(x)=$\frac{1}{2}$x2-bx+alnx存在极大值点x0,且对于b的任意可能取值,恒有极大值f(x0)<0,则下列结论中正确的是(  )
A.存在x0=$\sqrt{a}$,使得f(x0)<-$\frac{1}{e}$B.存在x0=$\sqrt{a}$,使得f(x0)>-e
C.a的最大值为e2D.a的最大值为e3

分析 求函数的导数,根据函数存在极小值等价为f′(x)=0有解,转化为一元二次方程,根据一元二次方程根与判别式△之间的关系进行转化求解即可.

解答 解:函数的定义域为(0,+∞),
则函数的导数f′(x)=x-b+$\frac{a}{x}$,
若函数f(x)存在极大值点x0
则f′(x)=0有解,
即x2-bx+a=0有两个不等的正根,
则 $\left\{\begin{array}{l}{△{=b}^{2}-4a>0}\\{{x}_{1}{+x}_{2}=b>0}\\{{x}_{1}{•x}_{2}=a>0}\end{array}\right.$,得b>2$\sqrt{a}$,(a>0),
由f′(x)=0得x1=$\frac{b-\sqrt{{b}^{2}-4a}}{2}$,x2=$\frac{b+\sqrt{{b}^{2}-4a}}{2}$,
分析易得f(x)的极大值点为x1=x0
∵b>2$\sqrt{a}$,(a>0),
∴x1=x0=$\frac{b-\sqrt{{b}^{2}-4a}}{2}$=$\frac{2a}{b+\sqrt{{b}^{2}-4a}}$∈(0,$\sqrt{a}$),
则f(x)极大值=f(x0)=$\frac{1}{2}$${{x}_{0}}^{2}$-bx0+alnx0=$\frac{1}{2}$x02-x02-a+alnx0=-$\frac{1}{2}$${{x}_{0}}^{2}$+alnx0-a,
设g(x)=alnx-$\frac{1}{2}$x2-a,x∈(0,$\sqrt{a}$),
f(x)的极大值恒小于0等价为g(x)恒小于0,
∵g′(x)=$\frac{a}{x}$-x=$\frac{a{-x}^{2}}{x}$>0,
∴g(x)在(0,$\sqrt{a}$)上单调递增,
故g(x)<g($\sqrt{a}$)=aln$\sqrt{a}$-$\frac{3}{2}$a≤0,
得ln$\sqrt{a}$≤$\frac{3}{2}$,即a≤e3
故a的最大值为是e3
故选:D.

点评 本题主要考查函数极值的应用,求函数的导数,利用函数极值和导数之间的关系转化为一元二次方程根的与判别式△之间的关系是解决本题的关键.综合性较强,难度极大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.一个四棱锥和一个三棱锥恰好可以拼接成一个三棱柱,这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等,设四棱锥、三棱锥、三棱柱的高分别为h1,h2,h3,则h1:h2:h3=$\sqrt{3}$:2:2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若a,b在区间$[{0,\sqrt{3}}]$上取值,则函数$f(x)=\frac{1}{3}a{x^3}+b{x^2}+\frac{1}{4}ax$在R上有两个相异极值点的概率是(  )
A.$\frac{1}{4}$B.$1-\frac{{\sqrt{3}}}{2}$C.$\frac{3}{4}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=ex-ln(x+m).
(1)设x=0是f(x)的极值点,求函数f(x)在[1,2]上的最值;
(2)若对任意x1,x2∈[0,2]且x1>x2,都有$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$>-1,求m的取值范围.
(3)当m≤2时,证明f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=x3-2tx2+t2x在x=2处有极小值,则实数t的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,角A,B,C的对边分别为a,b,c
(1)若a,b,c成等差数列,且sinA=2sinC,求cosB的值;
(2)若b=c=2,且函数f(x)=$\frac{1}{4}$x3-$\frac{3}{4}$x的极大值为cosA,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知a是实常数,函数f(x)=xlnx+ax2
(1)若曲线y=f(x)在x=1处的切线过点A(0,-2),求实数a的值;
(2)若f(x)有两个极值点x1,x2(x1<x2
①求证:-$\frac{1}{2}$<a<0;
②求证:f(x2)>f(x1)且x1∈(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知等比数列{an}的通项公式为an=an-1(n∈N*),则S=1+a+a2+…+an=$\left\{\begin{array}{l}n+1,(a=1)\\ \frac{{1-{a^{n+1}}}}{1-a},(a≠1)\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合A={x|1≤x≤4},B={x|x<2或x>4},求:
①A∩B
②∁R(A∪B)

查看答案和解析>>

同步练习册答案