【题目】如图,平面
平面
,
,四边形
为平行四边形,
,
为线段
的中点,点
满足
.
![]()
(Ⅰ)求证:直线
平面
;
(Ⅱ)求证:平面
平面
;
(Ⅲ)若平面
平面
,求直线
与平面
所成角的正弦值.
【答案】(1)见证明;(2)见证明; (3)![]()
【解析】
(Ⅰ)连接
,交
于点
,利用平几知识得线线平行,再根据线面平行判定定理得结论,(Ⅱ)建立空间直角坐标系,利用向量垂直进行论证线线垂直,再根据线面垂直判定定理以及面面垂直垂直判定定理得结果,(Ⅲ)建立空间直角坐标系,根据面面垂直得两平面法向量垂直,进而得P点坐标,最后利用空间向量数量积求线面角.
(Ⅰ)证明:连接
,交
于点
,连接![]()
在平行四边形
中,因为
,所以
,
又因为
,即
,
所以
,
又因为
平面
,
平面
,所以直线
平面
.
(Ⅱ)证明:因为
,
为线段
的中点,所以
,
又因为平面
平面
于
,
平面
所以
平面![]()
在平行四边形
中,因为
,所以![]()
以
为原点,分别以
所在直线为
轴,
轴,建立空间直角坐标系,
![]()
则![]()
因为
平面
所以设
,
则![]()
所以![]()
所以
,又因为![]()
所以
平面
,又因为
平面![]()
所以平面
平面
.
(Ⅲ)解:因为![]()
设
为平面
的一个法向量
则
不妨设![]()
因为![]()
设
为平面
的一个法向量
则
不妨设![]()
因为平面
平面
,所以
,所以![]()
因为![]()
所以![]()
所以
,
所以![]()
所以直线
与平面
所成角的正弦值为
.
科目:高中数学 来源: 题型:
【题目】如图所示,在直角梯形
中,
,
,
,
,
,
两点分别在线段
,
上运动,且
.将三角形
沿
折起,使点
到达
的位置,且平面
平面
.
![]()
(1)判断直线
与平面
的位置关系并证明;
(2)证明:
的长度最短时,
,
分别为
和
的中点;
(3)当
的长度最短时,求平面
与平面
所成角(锐角)的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD是矩形,平面ABCD⊥平面BCE,BE⊥EC.
![]()
(1)求证:平面AEC⊥平面ABE;
(2)点F在BE上.若DE∥平面ACF,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,已知椭圆:
(
)的离心率为
,右准线方程是直线l:
,点P为直线l上的一个动点,过点P作椭圆的两条切线![]()
,切点分别为AB(点A在x轴上方,点B在x轴下方).
![]()
(1)求椭圆的标准方程;
(2)①求证:分别以![]()
为直径的两圆都恒过定点C;
②若
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
的内角
所对的边分别为
,_________,且
.现从:①
,②
,③
这三个条件中任选一个,补充在以上问题中,并判断这样的
是否存在,若存在,求
的面积
_________;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com