精英家教网 > 高中数学 > 题目详情
11.定义在[0,+∞)上的函数f(x),当x∈[0,2]时,f(x)=4(|x-1|-1),且对任意实数 x∈[2n-2,2n+1-2](n∈N*,n≥2),都有f(x)=$\frac{1}{2}$f($\frac{x}{2}$-1),若方程f(x)-log a x=0有且仅有三个实根,则实数a的取值范围是(  )
A.[$\frac{\sqrt{10}}{10}$,$\frac{\sqrt{2}}{2}$)B.($\frac{\sqrt{10}}{10}$,$\frac{\sqrt{2}}{2}$)C.($\frac{1}{10}$,$\frac{1}{2}$)D.[$\frac{1}{10}$,$\frac{1}{2}$)

分析 作出y=f(x)和y=logax的函数图象,根据图象交点个数列不等式组,解出a即可.

解答 解:作出y=f(x)的函数图象如图所示:

∵方程f(x)-log a x=0有且仅有三个实根,
∴y=f(x)与y=logax的函数图象有三个交点,
当a>1时,显然两图象只有1个交点,不符合题意;
当0<a<1时,若两图象有3个交点,
则$\left\{\begin{array}{l}{lo{g}_{a}4>-2}\\{lo{g}_{a}10<-1}\end{array}\right.$,解得$\frac{1}{10}$<a<$\frac{1}{2}$.
故选C.

点评 本题考查了方程解的个数与函数图象的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图,将正六边形ABCDEF中的一半图形ABCD绕AD翻折到AB1C1D,使得∠B1AF=60°.G是BF与AD的交点.
(Ⅰ)求证:平面ADEF⊥平面B1FG;
(Ⅱ)求直线AB1与平面ADEF所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.观察下列式子:
13=1,23=3+5,33=7+9+11,43=13+15+17+19,…,按照上述规律,则83=57+59+61+63+65+67+69+71.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数f(x)=xn+3x+2x在点M(1,6)处切线的斜率为3+3ln3,则n的值是(  )
A.1B.2C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.己知x、y∈R,i是虚数单位,若x+yi与$\frac{2+i}{1+i}$互为共轭复数,则x+y=(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系xOy中,己知曲线C1的参数方程为$\left\{\begin{array}{l}{x=1+2cosθ}\\{y=2sinθ}\end{array}\right.$(θ为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.
(I )求曲线C1的普通方程;
(II)极坐标方程为2ρsin(θ+$\frac{π}{3}$)=3$\sqrt{3}$的直线l与C1交P,Q两点,求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.执行如图所示的程序框图,如果输人的x=-10.则输出的y=(  )
A.0B.1C.8D.27

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{{m}^{2}}$=1(m>0)与双曲线$\frac{{x}^{2}}{7}-\frac{{y}^{2}}{{n}^{2}}$=1(n>0)有相同的焦点,则m+n的最大值是(  )
A.3B.6C.18D.36

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=sin2x+2$\sqrt{3}$sinxcosx+sin(x+$\frac{π}{4}$)sin(x-$\frac{π}{4}$),x∈R.
(Ⅰ)求f(x)的最小正周期和值域;
(Ⅱ)若x=x0(x0∈[0,$\frac{π}{2}$])为f(x)的一个零点,求sin2x0的值.

查看答案和解析>>

同步练习册答案