精英家教网 > 高中数学 > 题目详情
盒子中装有卡号为1,2,3,4,5的五张卡片,现从中取出3张,以X表示取出的最大号码;
(1)写出X的分布列;    
(2)求E(X).
考点:离散型随机变量及其分布列,离散型随机变量的期望与方差
专题:概率与统计
分析:由题意知X=3,4,5,分别求出相应的概率,由此能求出X的分布列和E(X).
解答: 解:(1)由题意知X=3,4,5,
P(X=3)=
C
3
3
C
3
5
=0.1,
P(X=4)=
C
2
3
C
3
5
=0.3,
P(X=5)=
C
2
4
C
3
5
=0.6.
∴X的分布列为:
 X 3 5
 P 0.1 0.3 0.6
(2)E(X)=3×0.1+4×0.3+5×0.6=4.5.
点评:本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,在历年高考中都是必考题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)已知集合A={x|log2(3-x)≤2},集合B={x|
2
x+2
≥1},求A∩B.
(2)将形如
.
a11a12
a21a22
.
的符号称二阶行列式,现规定
.
a11a12
a21a22
.
=a11a22-a12a21.试计算二阶行列式
.
cos
π
4
1
1cos
π
3
.
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

从5名男医生、4名女医生中选出3名医生组成一个医疗小分队,要求其中男、女医生都有,则不同的组队方案共有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
x+y≥0
x-y+m≥0
x≤1
,若此不等式组表示的平面区域的面积为9,则实数m的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn,且a1=1,a2=3.
(1)求数列{an}的通项公式;
(2)记bn=
1
anan+1
,求数列{bn}的前n项和Tn,求使得Tn
m
20
对所有n∈N*都成立的最小正整数m.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左焦点为F,过点F的直线交椭圆于A,B两点.|AF|的最大值是M,|BF|的最小值是m,满足M•m=
3
4
a2
(1)求该椭圆的离心率;
(2)设线段AB的中点为G,AB的垂直平分线与x轴和y轴分别交于D,E两点,O是坐标原点.记△GFD的面积为S1,△OED的面积为S2,求
S1
S2
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m为等差数列1,5,9,…,中任一项,二项式(2x+
3
x
m展开式中存在常数项,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m∈R,命题p:对任意x∈[0,1],不等式2x-2≥m2-3m恒成立;命题q:存在x∈[-1,1],使得m≤ax成立.
(1)若p为真命题,求m的取值范围;
(2)当a=1,若p∧q为假,p∨q为真,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程ax=logax有两个不相等的实数根,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案