精英家教网 > 高中数学 > 题目详情
(1)已知集合A={x|log2(3-x)≤2},集合B={x|
2
x+2
≥1},求A∩B.
(2)将形如
.
a11a12
a21a22
.
的符号称二阶行列式,现规定
.
a11a12
a21a22
.
=a11a22-a12a21.试计算二阶行列式
.
cos
π
4
1
1cos
π
3
.
的值.
考点:交集及其运算,二阶矩阵
专题:集合
分析:(1)求出A与B中不等式的解集确定出A与B,找出两集合的交集即可;
(2)根据题中的新定义化简原式,计算即可得到结果.
解答: 解:(1)由A中log2(3-x)≤2,得到
3-x>0
3-x≤4

解得:-1≤x<3,即A=[-1,3);
由B中不等式变形得:
2
x+2
-1≥0,即
x
x+2
≤0,
解得:-2<x≤0,即B=(-2,0],
则A∩B=[-1,0];
(2)根据题意得:
.
cos
π
4
1
1cos
π
3
.
=cos
π
4
cos
π
3
-1=
2
4
-1.
点评:此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
ex
1+ax2
,其中a为实数,常数e=2.718….
(1)若x=
1
3
是函数f(x)的一个极值点,求a的值;
(2)当a取正实数时,求函数f(x)的单调区间;
(3)当a=-4时,直接写出函数f(x)的所有减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1(-1,0)、F2(1,0),过F1作与x轴不重合的直线l交椭圆于A、B两点.
(Ⅰ)若△ABF2为正三角形,求椭圆的标准方程;
(Ⅱ)若椭圆的离心率满足0<e<
5
-1
2
,O为坐标原点,求证OA2+OB2<AB2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C的极坐标方程为ρsin2θ=4cosθ,直线l的参数方程为
x=tcosα
y=1+tsinα
(t为参数,0≤α<π).
(Ⅰ)把曲线C的极坐标方程化为直角坐标方程,并说明曲线C的形状;
(Ⅱ)若直线l经过点(1,0),求直线l被曲线C截得的线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a(x-1)2+lnx,a∈R.
(Ⅰ)当a=-
1
4
,求函数f(x)的单调区间;
(Ⅱ)当x∈[1,+∞),f(x)≤x-1恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=px+q,集合A={x丨x=f(x)},集合B={x丨x=f[f(x)]}.
(1)求证:A⊆B;
(2)若A=B,求p,q应满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)求点P(1,2)关于直线x-y-1=0的对称点Q的坐标;
(2)求直线x+3y-1=0关于x-y+1=0的对称直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2cosx(sinx-cosx)+1.
(1)求函数f(x)的最小正周期;
(2)求函数f(x)最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

盒子中装有卡号为1,2,3,4,5的五张卡片,现从中取出3张,以X表示取出的最大号码;
(1)写出X的分布列;    
(2)求E(X).

查看答案和解析>>

同步练习册答案