ÒÑÖªÍÖÔ²
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄ×ó¡¢ÓÒ½¹µã·Ö±ðÊÇF1£¨-c£¬0£©¡¢F2£¨c£¬0£©£¬QÊÇÍÖÔ²ÍâµÄ¶¯µã£¬Âú×ã|
F1Q
|=2a£®µãPÊÇÏß¶ÎF1QÓë¸ÃÍÖÔ²µÄ½»µã£¬µãTÔÚÏß¶ÎF2QÉÏ£¬²¢ÇÒÂú×ã
PT
TF2
=0
£¬|
TF2
|¡Ù0£®
£¨1£©ÇóÖ¤£º|PQ|=|PF2|£»
£¨2£©ÇóµãTµÄ¹ì¼£CµÄ·½³Ì£»
£¨3£©ÈôÍÖÔ²µÄÀëÐÄÂÊe=
3
2
£¬ÊÔÅжϹ켣CÉÏÊÇ·ñ´æÔÚµãM£¬Ê¹¡÷F1MF2µÄÃæ»ýS=b2£¬Èô´æÔÚ£¬ÇëÇó³ö¡ÏF1MF2µÄÕýÇÐÖµ£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺Բ׶ÇúÏßÖеÄ×îÖµÓ뷶ΧÎÊÌâ
·ÖÎö£º£¨1£©ÓÉÍÖÔ²µÄ¶¨ÒåÓÐ|PF1|+|PF2|=2a£¬ÔÙ¸ù¾Ý|QF1|=|PF1|+|QP|=2a£¬¿ÉµÃ|PQ|=|PF2|£®
£¨2£©ÓÉÌõ¼þ¿ÉµÃOTÊÇ¡÷QF1F2µÄÖÐλÏߣ¬¿ÉµÃ|OT|=
1
2
|QF1|=a
£¬ÓÚÊÇ¿ÉÇóµãTµÄ¹ì¼£CµÄ·½³Ì£®
£¨3£©¼ÙÉèCÉÏ´æÔÚµãM£¨x0£¬y0£©Ê¹S=b2µÄ³äÒªÌõ¼þÊÇ
x
2
0
+
y
2
0
=a2¡­(3)
1
2
•2c|y0|=b2¡­(4)
£¬¹ÊÓÐa¡Ý
b2
c
£¬ÇóµÃ
5
-1
2
¡Üe£¼1£®¸ù¾Ý
3
2
¡Ê[
5
-1
2
£¬1£©£¬¿ÉµÃ¹ì¼£CÉÏ´æÔÚµãMÂú×ãÌõ¼þ£®ÔÚ´ËÌõ¼þÏ£¬ÓÉS=
1
2
|
MF1
|•|
MF2
|sin¡ÏF1MF2=b2
£¬ÇóµÃtan¡ÏF1MF2µÄÖµ£®
½â´ð£º ½â£º£¨1£©ÓÉÍÖÔ²µÄ¶¨ÒåÓÐ|PF1|+|PF2|=2a£¬
ÓÖ|QF1|=|PF1|+|QP|=2a£¬
¡à|PQ|=|PF2|£®
£¨2£©ÓÉ£¨1£©µÃ|PQ|=|PF2|£¬ÓÖ
PT
TF2
=0£¬|
TF2
|¡Ù0
£®
¡àµãTΪQF2µÄÖе㣬
ÓÖµãOÊÇÏß¶ÎF1F2µÄÖе㣬
¡àOTÊÇ¡÷QF1F2µÄÖÐλÏߣ®
¡à|OT|=
1
2
|QF1|=a
£¬ËùÒÔµãTµÄ¹ì¼£CµÄ·½³ÌÊÇx2+y2=a2£®
£¨3£©¼ÙÉèCÉÏ´æÔÚµãM£¨x0£¬y0£©Ê¹S=b2µÄ³äÒªÌõ¼þÊÇ
x
2
0
+
y
2
0
=a2¡­(3)
1
2
•2c|y0|=b2¡­(4)
£¬
ÓÉÌâÒâµÃ|y0|¡Üa£¬ÓÉ£¨4£©µÃ|y0|=
b2
c
£®
ËùÒÔÈôÒª´æÔÚµãM£¬Ê¹S=b2£¬±ØÐëa¡Ý
b2
c
£¬¼´ac¡Ýb2 £¬
¡àac¡Ýa2-c2£¬Á½±ßͬ³ýÒÔa2µÃe2+e-1¡Ý0£¬½âµÃ
5
-1
2
¡Üe£¼1£¬»òe¡Ü
-
5
-1
2
£¨ÉáÈ¥£©£®
¡ß
3
2
¡Ê[
5
-1
2
£¬1£©£¬
¹Êµ±ÍÖÔ²µÄÀëÐÄÂÊe=
3
2
ʱ£¬¹ì¼£CÉÏ´æÔÚµãM£¬Ê¹¡÷F1MF2µÄÃæ»ýS=b2£®
ÔÚ´ËÌõ¼þÏ£¬
MF1
=(-c-x0£¬-y0)£¬
MF2
=(c-x0£¬-y0)
£¬
ÓÉ
MF1
MF2
=
x
2
0
-c2+
y
2
0
=a2-c2=b2
£¬
MF1
MF2
=|
MF1
|•|
MF2
|cos¡ÏF1MF2
£¬S=
1
2
|
MF1
|•|
MF2
|sin¡ÏF1MF2=b2
£¬
µÃtan¡ÏF1MF2=2£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÔ²×¶ÇúÏߵ͍Òå¡¢ÐÔÖÊ¡¢±ê×¼·½³ÌµÄ×ÛºÏÓ¦Óã¬Ö±ÏߺÍÔ²×¶ÇúÏßµÄλÖùØÏµµÄÓ¦Óã¬ÊôÓÚÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÅ×ÎïÏßy2=8x¹ýµãM£¨4£¬2£©µÄÖ±ÏßlÓëÅ×ÎïÏßÏཻÓÚA£¨x1£¬y1£©£¬B£¨x2£¬y2£©Á½µã£¬µ±y12+y22È¡µÃ×îСֵʱ£¬Ö±ÏßlµÄ·½³ÌÊÇ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¼¯ºÏA={1£¬2£¬3£¬4£¬5£¬6}£¬ÔÚAÖÐÈÎÈ¡Èý¸öÔªËØ£¬Ê¹ËüÃǵĺÍСÓÚÓàϵÄÈý¸öÔªËØµÄºÍ£¬ÔòÈ¡·¨ÖÖÊý¹²ÓУ¨¡¡¡¡£©
A¡¢4B¡¢10C¡¢15D¡¢20

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éèa£¬b±íʾֱÏߣ¬¦Á£¬¦Â£¬¦Ã±íʾ²»Í¬µÄÆ½Ãæ£¬ÔòÏÂÁÐÃüÌâÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A¡¢Èôa¡Í¦ÁÇÒa¡Íb£¬Ôòb¡Î¦Á
B¡¢Èô¦Ã¡Í¦ÁÇҦáͦ£¬Ôò¦Á¡Î¦Â
C¡¢Èôa¡Î¦ÁÇÒa¡Î¦Â£¬Ôò¦Á¡Î¦Â
D¡¢Èô¦Ã¡Î¦ÁÇҦáΦ£¬Ôò¦Á¡Î¦Â

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÍÖÔ² 
x2
9
+
y2
m2
=1
£¬£¨0£¼m£¼3£©µÄ×óÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬¹ýF2µÄÖ±ÏßÓëÍÖÔ²½»ÓÚA¡¢BÁ½µã£¬µãB¹ØÓÚyÖáµÄ¶Ô³ÆµãΪµãC£¬ÔòËıßÐÎAF1CF2µÄÖܳ¤Îª£¨¡¡¡¡£©
A¡¢2m
B¡¢4m
C¡¢4
9-m2
D¡¢12

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ËÄÀâ×¶A-BCDEÖУ¬¡÷ABCÊÇÕýÈý½ÇÐΣ¬ËıßÐÎBCDEÊǾØÐΣ¬ÇÒÆ½ÃæABC¡ÍÆ½ÃæBCDE£¬AB=2£¬AD=4£®
£¨1£©ÈôµãGÊÇAEµÄÖе㣬ÇóÖ¤£ºAC¡ÎÆ½ÃæBDG
£¨2£©ÈôFÊÇÏß¶ÎABµÄÖе㣬ÇóÈýÀâ×¶B-EFCµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÒÔÔ­µãΪÖÐÐÄ£¬ÒÔ×ø±êÖáΪ¶Ô³ÆÖáµÄÍÖÔ²CµÄÒ»¸ö½¹µãΪ(0£¬
3
)
£¬ÇÒ¹ýµã£¨0£¬2£©£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨¢ò£©ÉèÖ±Ïßy=kx+1ÓëÍÖÔ²C½»ÓÚA£¬BÁ½µã£¬kΪºÎֵʱ
OA
¡Í
OB
£¿´Ëʱ|
AB
|
µÄÖµÊǶàÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

º¯Êýf£¨x£©=
2-x
x-1
µÄ¶¨ÒåÓòΪ¼¯ºÏA£¬¹ØÓÚxµÄ²»µÈʽ32ax£¼3a+x£¨a¡ÊR£©µÄ½â¼¯ÎªB£¬ÇóʹA¡ÉB=AµÄʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÒ»´ÎÑݽ²±ÈÈüÖУ¬6λÆÀί¶ÔÒ»ÃûÑ¡ÊÖ´ò·ÖµÄ¾¥Ò¶Í¼Èçͼ1Ëùʾ£¬ÈôÈ¥µôÒ»¸ö×î¸ß·ÖºÍÒ»¸ö×îµÍ·Ö£¬µÃµ½Ò»×éÊý¾Ýxi£¨1¡Üi¡Ü4£©£¬ÔÚÈçͼ2ËùʾµÄ³ÌÐò¿òͼÖУ¬
.
x
ÊÇÕâ4¸öÊý¾ÝÖÐµÄÆ½¾ùÊý£¬ÔòÊä³öµÄvµÄֵΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸