(本小题满分12分)四棱锥
中,底面
为矩形,侧面
底面
,
,
,
.![]()
(Ⅰ)证明:
;
(Ⅱ)设
与平面
所成的角为
,
求二面角
的余弦值.
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
如图,四棱锥P—ABCD中,PB⊥底面ABCD,CD⊥PD,底面ABCD为直角梯形,AD∥BC,AB⊥BC,AB=AD=PB=3,点E在棱PA上,且PE=2EA。
(1)求直线PC与平面PAD所成角的余弦值;(6分)
(2)求证:PC//平面EBD;(4分)
(3)求二面角A—BE—D的余弦值.(4分)![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分14分)如图,在矩形ABCD中,AB=2BC,点M在边CD上,点F在边AB上,且
,垂足为E,若将
沿AM折起,使点D位于
位置,连接
,
得四棱锥
.
(1)求证:
;(2)若
,直线
与平面ABCM所成角的大小为
,求直线
与平面ABCM所成角的正弦值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题共12分)如图,四棱锥
的底面是直角梯形,
,
,
和
是两个边长为
的正三角形,
,
为
的中点,
为
的中点.
(Ⅰ)求证:
平面
;
(Ⅱ)求证:
平面
;
(Ⅲ)求直线
与平面
所成角的正弦值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在直三棱柱ABC-
中,
,D,E分别为BC,
的中点,
的中点,四边形
是边长为6的正方形.![]()
(1)求证:
平面
;
(2)求证:
平面
;
(3)求二面角
的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,
为圆
的直径,点
、
在圆
上,且
,矩形
所在的平面和圆
所在的平面互相垂直,且
,
.
(Ⅰ)求证:
平面
;
(Ⅱ)设
的中点为
,求证:
平面
;
(Ⅲ)设平面
将几何体
分割成的两个锥体的体积分别为
、
,求
的值![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(12分)(理)如图9-6-6,矩形ABCD中,A
B=1,BC=a,PA⊥平面ABCD
(1)问BC边上是否存在Q点,使
⊥
,说明理由.
(2)问当Q点惟一,且cos<
,
>=
时,求点P的位置.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)如图,ΔABC中,∠A=90°,AB=4,AC=3,平面ABC外一点P在平面ABC内的射影是AB中点M,二面角P—AC—B的大小为45°.
(I)求二面角P—BC—A的正切值;
(II)求二面角C—PB—A的正切值.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com