精英家教网 > 高中数学 > 题目详情

(本小题满分12分)四棱锥中,底面为矩形,侧面底面

(Ⅰ)证明:
(Ⅱ)设与平面所成的角为
求二面角的余弦值.

(I)见解析;(II)二面角C-AD-E的余弦值为

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
如图,四棱锥P—ABCD中,PB⊥底面ABCD,CD⊥PD,底面ABCD为直角梯形,AD∥BC,AB⊥BC,AB=AD=PB=3,点E在棱PA上,且PE=2EA。
(1)求直线PC与平面PAD所成角的余弦值;(6分)
(2)求证:PC//平面EBD;(4分)
(3)求二面角A—BE—D的余弦值.(4分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)如图,在矩形ABCD中,AB=2BC,点M在边CD上,点F在边AB上,且,垂足为E,若将沿AM折起,使点D位于位置,连接得四棱锥.
(1)求证:;(2)若,直线与平面ABCM所成角的大小为,求直线与平面ABCM所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题共12分)如图,四棱锥的底面是直角梯形,是两个边长为的正三角形,的中点,的中点.
(Ⅰ)求证:平面
(Ⅱ)求证:平面
(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图:在多面体中,,


(1)求证:;
(2)求证:
(3)求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱ABC-中,,D,E分别为BC,的中点,的中点,四边形是边长为6的正方形.

(1)求证:平面
(2)求证:平面
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,为圆的直径,点在圆上,且,矩形所在的平面和圆所在的平面互相垂直,且.
(Ⅰ)求证:平面
(Ⅱ)设的中点为,求证:平面
(Ⅲ)设平面将几何体分割成的两个锥体的体积分别为,求的值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)(理)如图9-6-6,矩形ABCD中,AB=1,BC=a,PA⊥平面ABCD
(1)问BC边上是否存在Q点,使,说明理由.
(2)问当Q点惟一,且cos<>=时,求点P的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)如图,ΔABC中,∠A=90°,AB=4,AC=3,平面ABC外一点P在平面ABC内的射影是AB中点M,二面角P—AC—B的大小为45°.
(I)求二面角P—BC—A的正切值;
(II)求二面角C—PB—A的正切值.

查看答案和解析>>

同步练习册答案