精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,,∠ABD=ADB.

(Ⅰ)求证:

(Ⅱ)若,点的中点,求平面切割三棱锥得到的上下两个几何体的体积之比.

【答案】(Ⅰ)证明见解析(Ⅱ)

【解析】

)取BD中点F,连接AFSF,由已知可得SFBDAFBD,再由线面垂直的判定可得BD⊥平面SAF,则SABD

)取SD中点H,连接CHEH,可得EHBC,故BCEH共面,过CCGADG,设AB=x,由tanCDA=2求得x=2,证明AB⊥平面SAD,然后分别求出三棱锥S-ACD与四棱锥C-AEHD的体积,则答案可求.

)取的中点,连接

平面平面

平面

平面

)取的中点,连接

易知,故点共面.

,故,解得

平面

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】改革开放年,我国经济取得飞速发展,城市汽车保有量在不断增加,人们的交通安全意识也需要不断加强.为了解某城市不同性别驾驶员的交通安全意识,某小组利用假期进行一次全市驾驶员交通安全意识调查.随机抽取男女驾驶员各人,进行问卷测评,所得分数的频率分布直方图如图所示在分以上为交通安全意识强.

的值,并估计该城市驾驶员交通安全意识强的概率;

已知交通安全意识强的样本中男女比例为,完成下列列联表,并判断有多大把握认为交通安全意识与性别有关;

安全意识强

安全意识不强

合计

男性

女性

合计

用分层抽样的方式从得分在分以下的样本中抽取人,再从人中随机选取人对未来一年内的交通违章情况进行跟踪调查,求至少有人得分低于分的概率.

附:其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x(lnxax)有两个极值点,则实数a的取值范围是(   )

A. (-∞,0) B. C. (0,1) D. (0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,交于点.

(Ⅰ)在线段上找一点,使得平面,并证明你的结论;

(Ⅱ)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,曲线的极坐标方程为.以极点为原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为为参数).

(1)若,求曲线的直角坐标方程以及直线的极坐标方程;

(2)设点,曲线与直线交于两点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】单位正方体ABCD-,黑、白两蚂蚁从点A出发沿棱向前爬行,每走完一条棱称为走完一段.白蚂蚁爬地的路线是AA1A1D1‥,黑蚂蚁爬行的路线是ABBB1‥,它们都遵循如下规则:所爬行的第i+2段与第i段所在直线必须是异面直线(iN*.设白、黑蚂蚁都走完2020段后各自停止在正方体的某个顶点处,这时黑、白两蚂蚁的距离是(

A.1B.C.D.0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了适应高考改革,某中学推行“创新课堂”教学.高一平行甲班采用“传统教学”的教学方式授课,高一平行乙班采用“创新课堂”的教学方式授课,为了比较教学效果,期中考试后,分别从两个班中各随机抽取名学生的成绩进行统计分析,结果如下表:(记成绩不低于分者为“成绩优秀”)

分数

甲班频数

乙班频数

(Ⅰ)由以上统计数据填写下面的列联表,并判断是否有以上的把握认为“成绩优秀与教学方式有关”?

甲班

乙班

总计

成绩优秀

成绩不优秀

总计

(Ⅱ)现从上述样本“成绩不优秀”的学生中,抽取人进行考核,记“成绩不优秀”的乙班人数为,求的分布列和期望.

参考公式:,其中

临界值表

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,底面是正形,的中点.

1)求证:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆M过点且与直线相切.

(1)求动圆圆心M的轨迹C的方程;

(2)斜率为的直线l经过点且与曲线C交于AB两点,线段AB的中垂线交x轴于点N,求的值.

查看答案和解析>>

同步练习册答案