分析 (1)根据导数和函数单调性的关系,以及导数和最值得关系即可求出;
(2)令h(x)=ln(1+x)-$\frac{2x}{x+2}$,利用导数和最值得关系即可证明.
解答 解:(1)∵f(x)=$\frac{ln(1+x)}{x}$(x>0),
∴f′(x)=$\frac{\frac{x}{1+x}-ln(1+x)}{{x}^{2}}$(x>0),
设g(x)=$\frac{x}{1+x}$-ln(1+x),x>0,
∴g′(x)=$\frac{1+x-x}{(1+x)^{2}}$-$\frac{1}{1+x}$=$\frac{-x}{(1+x)^{2}}$<0,
∴g(x)在(0,+∞)为减函数,
∴g(x)<g(0)=0,
∴f′(x)<0,
∴f(x)在(0,+∞)为减函数,
(2)令h(x)=ln(1+x)-$\frac{2x}{x+2}$,
∴h′(x)=$\frac{{x}^{2}}{(1+x)(2+x)^{2}}$,
x>0时,h′(x)>0,
∴h(x)在(0,+∞)上单调递增,
∴h(x)>h(0)=0,
∴ln(1+x)>$\frac{2x}{x+2}$,
从而,x>0时,f(x)>$\frac{2}{x+2}$得证.
点评 本题考查了导数和函数的单调性最值得关系,考查了转化思想,培养了学生的运算能力,分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com