精英家教网 > 高中数学 > 题目详情

【题目】已知直线l13xy10l2x2y50l3xay30不能围成三角形,则实数a的取值可能为(

A.1B.C.2D.1

【答案】BCD

【解析】

根据三条直线中有两条直线的斜率相等时,或者三条直线交于一点时,不能构成三角形进行求解即可.

因为直线l1的斜率为3,直线l2的斜率为,所以直线一定相交,交点坐标是方程组的解,解得交点坐标为:.

时,直线与横轴垂直,方程为:不经过点,所以三条直线能构成三角形;

时,直线的斜率为:.

当直线l1与直线l3的斜率相等时,即,此时这两直线平行,因此这三条直线不能三角形;

当直线l2与直线l3的斜率相等时,即,此时这两直线平行,因此这三条直线不能三角形;

当直线l3过直线交点时,三条直线不能构成三角形,即有

故选:BCD

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( )

A. 命题“若,则”的否命题是“若,则

B. 命题“”的否定是“

C. 处有极值”是“”的充要条件

D. 命题“若函数有零点,则“”的逆否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个说法,其中正确的是(

A.线段在平面内,则直线不在平面内;B.三条平行直线共面;

C.两平面有一个公共点,则一定有无数个公共点;D.空间三点确定一个平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求曲线在点处的切线方程;

2)求的单调区间;

3)若对于任意,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】五一劳动节放假,某商场进行一次大型抽奖活动.在一个抽奖盒中放有红、橙、黄、绿、蓝、紫的小球各2个,分别对应1分、2分、3分、4分、5分、6分.从袋中任取3个小球,按3个小球中最大得分的8倍计分,计分在20分到35分之间即为中奖.每个小球被取出的可能性都相等,用表示取出的3个小球中最大得分,求:

(1)取出的3个小球颜色互不相同的概率;

(2)随机变量的概率分布和数学期望;

(3)求某人抽奖一次,中奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,平面平面, 底面为梯形, .

(Ⅰ)求证:平面

(Ⅱ)求证:平面

(Ⅲ)若是棱的中点,求证:对于棱上任意一点都不平行

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 离心率等于是椭圆上的两点.

(1)求椭圆的方程;

(2)是椭圆上位于直线两侧的动点.当运动时,满足,试问直线的斜率是否为定值?如果为定值,请求出此定值;如果不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知直线,圆的圆心为,且经过点

1)求圆的方程;

2)若圆与圆关于直线对称,点分别为圆上任意一点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,底面ABCD是菱形,PA=PD,∠DAB=60°.

(1)证明:ADPB.

(2)若PB=AB=PA=2,求三棱锥P-BCD的体积。

查看答案和解析>>

同步练习册答案