精英家教网 > 高中数学 > 题目详情
已知直线l1的参数方程为:
x=1-2t
y=3+t
,t为参数.
(1)将直线l1的参数方程化成直线的普通方程(写成一般式);
(2)已知直线l2:x+y-2=0,判断l1与l2是否相交,如果相交,请求出交点坐标.
考点:直线的参数方程
专题:坐标系和参数方程
分析:(1)将参数方程
x=1-2t
y=3+t
消去参数t,化为普通方程.
(2)两直线斜率不相同,因此它们相交,再把这两条直线的方程联立方程
x+2y-7=0
x+y-2=0
,求得它们的交点的坐标.
解答: 解:(1)将参数方程
x=1-2t
y=3+t
化为普通方程:x+2y-7=0.
(2)两直线斜率不相同,因此它们相交,下面求它们的求点坐标:
联立方程
x+2y-7=0
x+y-2=0
,解得:
x=-3
y=5

可得交点的坐标为(-3,5).
点评:本题主要考查把参数方程化为普通方程的方法,求两条曲线的交点坐标,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

武汉电视台为了宣传武汉城市圈的情况,特举办了一期有奖知识问答活动,活动对18~48岁的人群随机抽取n人回答问题“武汉城市圈包括哪几个城市”,统计数据结果如表:
组数分组回答正确的人数占本组的频率
第1组[18,28)240x
第2组[28,38)3000.6
第3组[38,48]a0.4
(1)分别求出n,a,x的值;
(2)依据如图频率分布直方图求参与活动人群年龄的众数的估计值是多少?中位数的估计值是多少?
(3)若以表中的频率近似看作各年龄组正确回答问题的概率,规定年龄在[38,48]内回答正确的得奖金200元,回答错误的得鼓励奖金20元,年龄在[18,28)内回答正确的得奖金100元,回答错误的得鼓励奖金10元,主持人随机请一家庭的两个成员(父亲46岁,孩子21岁)回答问题,设该家庭获得奖金数为t元,记事件A为“数列an=-5n2+
t-40
n为递减数列”,求事件A发生的概率P(A).

查看答案和解析>>

科目:高中数学 来源: 题型:

某校研究性学习小组从汽车市场上随机抽取20辆纯电动汽车调查其续驶里程(单次充电后能行驶的最大里程).被调查汽车的续驶里程全部介于50公里和300公里之间,将统计结果分成5组:[50,100),[100,150),[150,200),[200,250),[250,300],绘制成如图所示的频率分布直方图.
(1)求直方图中x的值;
(2)求续驶里程在[200,300]的车辆数;
(3)若从续驶里程在[200,300]的车辆中随机抽取2辆车,记ξ表示续驶里程在[250,300)的车辆数,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1+ln(x+1)
x
(x>0).
(Ⅰ)试判断函数f(x)在(0,+∞)上单调性并证明你的结论;
(Ⅱ)若f(x)>
k
x+1
?x∈(0,+∞)恒成立,求正整数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某班主任对全班50名学生进行了作业量多少的调查,数据如下表:
认为作业多认为作业不多总数
喜欢玩电脑游戏201030
不喜欢玩电脑游戏51520
总数252550
(1)如果校长随机地问这个班的一名学生,下面事件发生的概率是多少?
①认为作业不多;
②喜欢玩电脑游戏并认为作业多;
(2)在认为作业多的学生中采用分层抽样的方法随机抽取5名,喜欢电脑游戏的应抽取几名?
(3)在(2)中抽取的5名中再任取2名,求恰有1名不喜欢电脑游戏的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知公差不为0的等差数列{an}的前n项和为Sn,S3=a4+2,且a1,a2-1,a3-1成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设数列{
1
anan+1
}的前n项和为Tn,求证:
1
3
≤Tn
1
2
(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b,c,d都是正数,且x=
a2+b2
,y=
c2+d2
.求证:xy≥
(ac+bd)(ad+bc)

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系xOy中,设动点P到定点F(1,0)的距离与到定直线l:x=-1的距离相等,记P的轨迹为Γ.又过点(1,0)并且斜率为2的直线AB与Γ交于A、B两点,求|AB|的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线x+2y-4=0与抛物线y2=4x相交于A、B两点,O是坐标原点,P是抛物线的弧
AOB
上求一点P,当△PAB面积最大时,P点坐标为
 

查看答案和解析>>

同步练习册答案