精英家教网 > 高中数学 > 题目详情
设a,b,c,d都是正数,且x=
a2+b2
,y=
c2+d2
.求证:xy≥
(ac+bd)(ad+bc)
考点:不等式的证明
专题:证明题,不等式的解法及应用
分析:根据不等式的左边减去右边化简结果为 (ad-bc)2≥0,可得不等式成立.
解答: 证明:∵(a2+b2)(c2+d2)-(ac+bd)2=( a2c2+a2d2+b2c2+b2d2)-(a2c2+2abcd+b2d2
=(ad-bc)2≥0,
∴(a2+b2)(c2+d2)≥(ac+bd)2 成立,又a,b,c,d都是正数,
a2+b2
c2+d2
≥ac+bd>0,①
同理
a2+b2
c2+d2
≥ad+bc>0,
∴xy≥
(ac+bd)(ad+bc)
点评:本题主要考查用比较法证明不等式,把差变为因式乘积的形式,是解题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
6
3
,右焦点F2到直线
x
a
+
y
b
=0的距离为1.
(1)求椭圆的C方程;
(2)已知直线y=k(x-2)(k≠0)与椭圆C相交于M、N两点,在轴x上是否存在定点E,使
EM
EM
为定值?若存在,求出E点的坐标和定值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文科)解关于x的不等式x2-ax-6a2<0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l1的参数方程为:
x=1-2t
y=3+t
,t为参数.
(1)将直线l1的参数方程化成直线的普通方程(写成一般式);
(2)已知直线l2:x+y-2=0,判断l1与l2是否相交,如果相交,请求出交点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

阅读如图的程序框图,运行相应的程序,则输出n的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-
 a
ax+
a
,证明函数y=f(x)的图象关于(
1
2
,-
1
2
)对称.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x(
1
2x-1
+
1
2
),试判断f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sin
1
2
x,
3
),
b
=(1,cos
1
2
x),函数f(x)=
a
b

(1)若f(x)=0,且π<x<2π,求x的值;
(2)求f(x)的最小正周期;
(3)若f(2α+
π
3
)=
10
13
,f(2β+
3
)=-
6
5
,α,β∈[0,
π
2
].求cos(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(2,1),
b
(-4,3),则
a
b
方向上的投影为
 

查看答案和解析>>

同步练习册答案