精英家教网 > 高中数学 > 题目详情
15.如图△ABC中,已知点D在BC边上,AD⊥AC,sin∠BAC=$\frac{2\sqrt{2}}{3}$,AB=3$\sqrt{2}$,AD=3,则BD的长为(  )
A.$\sqrt{2}$B.2$\sqrt{2}$C.$\sqrt{3}$D.2$\sqrt{3}$

分析 通过诱导公式易知cos∠BAD=$\frac{2\sqrt{2}}{3}$,利用余弦定理计算即得结论.

解答 解:∵AD⊥AC,∴∠DAC=90°,
∴sin∠BAC=sin(∠BAD+90°)=cos∠BAD=$\frac{2\sqrt{2}}{3}$,
又∵AB=3$\sqrt{2}$,AD=3,
∴BD2=AB2+AD2-2AB•ADcos∠BAD
=18+9-$2×3\sqrt{2}×3×\frac{2\sqrt{2}}{3}$
=3,
∴BD=$\sqrt{3}$,
故选:C.

点评 本题考查求三角形中某条线段的长度,利用三角函数的诱导公式、余弦定理是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.5个人坐一排,甲、乙必须相邻且甲不坐正中间的坐法有36种.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行如图的程序框图,如果输入的a=log32,b=log52,c=log23,那么输出m的值是(  )
A.log52B.log32C.log23D.都有可能

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设全集U=R,A={x|$\frac{x-1}{x-2}$≥0,x∈R},则CRA={x|1<x≤2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.向曲线x2+y2-4x-2$\sqrt{3}$y+3=0内随机掷一点,则该点落在x轴下方的概率为$\frac{\frac{2π}{3}-\sqrt{3}}{4π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列说法:
①设某大学的女生体重y(kg)与身高x(cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的线性回归方程为$\stackrel{∧}{y}$=0.85x-85.71,则若该大学某女生身高增加1cm,则其体重约增加0.85kg;
②命题“?x≥1,x2+3≥4”的否定是“?x<1,x2+3<4”
③相关系数r越小,表明两个变量相关性越弱;
④在一个2×2列联表中,由计算得K2=13.079,则有99%的把握认为这两个变量间有关系;
⑤已知随机变量ξ服从正态分布N(2,σ2),P(ξ≤5)=0.79,则P(ξ≤-1)=0.21;
其中错误的个数是(  )
本题可参考独立性检验临界值表:
P(K2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)=ex-x2+b,曲线y=f(x)与直线y=ax+1相切于点(1,f(1))
(I)求a,b的值;
(Ⅱ)证明:当x>0时,[ex+(2-e)x-1](3+cosx)-4xsinx>0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=-$\frac{1-{2}^{x}}{lo{g}_{2}(x-1)}$的定义域为{x|x>1且x≠2}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.小王参加网购后,快递员电话通知于本周五早上7:30-8:30送货到家,如果小王这一天离开家的时间为早上8:00-9:00,那么在他走之前拿到邮件的概率为(  )
A.$\frac{1}{8}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{7}{8}$

查看答案和解析>>

同步练习册答案