精英家教网 > 高中数学 > 题目详情
4.计算$\int_0^1{(\frac{1}{2}x}+2)dx$=$\frac{9}{4}$;$\int_{-a}^a{\sqrt{{a^2}-{x^2}}}dx$=$\frac{π{a}^{2}}{2}$.

分析 格局定积分的计算以及定积分的几何意义即可求出.

解答 解:$\int_0^1{(\frac{1}{2}x}+2)dx$=($\frac{1}{4}$x2+2x)|${\;}_{0}^{1}$=$\frac{1}{4}$+2=$\frac{9}{4}$;
$\int_{-a}^a{\sqrt{{a^2}-{x^2}}}dx$,表示以原点为圆心以a为半径的圆的面积的一半,
∴$\int_{-a}^a{\sqrt{{a^2}-{x^2}}}dx$=$\frac{1}{2}π$a2
故答案为:$\frac{9}{4}$,$\frac{π}{2}{a^2}$.

点评 本题考查了定积分的几何意义以及定积分的计算,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow{b}$=(-1,3),$\overrightarrow{a}$⊥($\overrightarrow{a}$-λ$\overrightarrow{b}$),则实数λ=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,平行四边形ABCD(A,B,C,D按逆时针顺序排列),AB,AD边所在直线的方程分别是x+4y-7=0,3x+2y-11=0,且对角线AC和BD的交点为M(2,0)
(1)求点A的坐标
(2)求CD边所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.一个盒子中装有5张卡片,每张卡片上编有一个数字,分别是1,2,3,4,5,现从盒子中随机抽取卡片
(Ⅰ)若一次抽取3张卡片,求所抽取的三张卡片的数字之和大于9的概率
(Ⅱ)若从编号为1、2、3、4的卡片中抽取,第一次抽一张卡片,放回后再抽取一张卡片,求两次抽取至少一次抽到数字3的卡片的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.($\sqrt{x}$+$\frac{1}{\root{3}{x}}$)2n(n∈N*)展开式中只有第6项系数最大,则其常数项为(  )
A.120B.210C.252D.45

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.复数z=1+2i的实部与虚部分别为(  )
A.1,2B.1,2iC.2,1D.2i,1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知A,B两点对应的复数分别为:1-3i,4+2i,则向量$\overrightarrow{AB}$对应的复数为3+5i.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线的方程是y=$\sqrt{3}$x,它的一个焦点与抛物线y2=16x的焦点相同,则双曲线的方程是(  )
A.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1B.$\frac{x^2}{3}-\frac{y^2}{8}=1$C.$\frac{x^2}{6}-\frac{y^2}{9}=1$D.$\frac{x^2}{8}-\frac{y^2}{16}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=sin2x+2ax(a∈R),若对任意实数m,直线l:x+y+m=0与曲线y=f(x)均不相切,则a的取值范围是(-∞,-1)∪(0,+∞).

查看答案和解析>>

同步练习册答案