精英家教网 > 高中数学 > 题目详情
在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,且AB=2CD,在棱AB上是否存在一点F,使平面C1CF∥ADD1A1?若存在,求点F的位置,若不存在,请说明理由.
考点:平面与平面平行的判定
专题:空间位置关系与距离
分析:当F为AB中点时,平面C1CF∥ADD1A1.因为此时CD
.
AF
.
C1D1,AFCD是平行四边形,且AFC1D1是平行四边形,由此能证明平面C1CF∥ADD1A1
解答: 解:当F为AB中点时,平面C1CF∥ADD1A1
理由如下:
∵在直四棱柱ABCD-A1B1C1D1中,
底面ABCD为等腰梯形,AB∥CD,
且AB=2CD,F为AB中点,
∴CD
.
AF
.
C1D1
∴AFCD是平行四边形,且AFC1D1是平行四边形,
∴CF∥AD,C1F∥AD1
又CF∩C1F=F,CF,C1F都在平面C1CF内,
∴平面C1CF∥ADD1A1
点评:本题考查使平面与平面平行的点的位置的确定,是基础题,解题时要注意空间思维能力的培养.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知直线l与过点M(-
3
2
),N(
2
,-
3
)的直线垂直,则直线l的倾斜角是(  )
A、60°B、120°
C、45°D、135°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=(x3-ax)ln(x2+1-a)(a∈R)
(Ⅰ)若方程f(x)=0有3个不同的根,求实数a的取值范围;
(Ⅱ)在(Ⅰ)的条件下,是否存在实数a,使得f(x)在(0,1)上恰有两个极值点x1,x2,且满足x2=2x1,若存在,求实数a的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
x
+alnx,其中a∈R,
(Ⅰ)若函数f(x)在x=1处取得极值,求实数a的值,
(Ⅱ)在(1)的结论下,若关于x的不等式f(x+1)>
x2+(t+2)x+t+2
x2+3x+2
(t∈N*),当x≥1时恒成立,求t的值;
(Ⅲ)令g(x)=x-f(x),若关于x的方程g(x)+g(3-x)=0在(0,1)内至少有两个解,求出实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x-alnx-1(a∈R),g(x)=
xeb
ex
(b∈R),且函数g(x)的最大值为1,
(1)求b的值;
(2)若函数f(x)有唯一零点,且对任意的x≥1,不等式f(x)-g(x)≥a恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ln(x+1)+mx,当x=0时,函数f(x)取得极大值.
(Ⅰ)求实数m的值;
(Ⅱ)已知结论:若函数f(x)=ln(x+1)+mx在区间(a,b)内导数都存在,且a>-1,则存在x0∈(a,b),使得f′(x0)=
f(b)-f(a)
b-a
,试用这个结论证明:若-1<x1<x2,函数g(x)=
f(x1)-f(x2)
x1-x2
(x-x1)+f(x1),则对任意x∈(x1+x2),都有f(x)>g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2cos(3π-
x
2
)cos(
π
2
-
x
2
)+sin2(π+
x
2
)-cos2(π+
x
2

(1)求函数f(x)的单调递减区间;
(2)若g(x)=f(
π
12
-x),求不等式g(x)<1的解集;
(3)若不等式|f(x)-a|<2当x∈[0,π]时恒成立,试确定a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3lnx+bx3+c在x=1处取得极值4+c.
(1)求a,b的值;
(2)若f(x)≤3c2对?x∈(0,+∞)恒成立,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知U=R,A={x|x>0},B={x|x>1},求A∩(∁UB).

查看答案和解析>>

同步练习册答案