精英家教网 > 高中数学 > 题目详情

【题目】某单位共有10名员工,他们某年的收入如下表:

员工编号

1

2

3

4

5

6

7

8

9

10

年薪(万元)

4

4.5

6

5

6.5

7.5

8

8.5

9

51

1)求该单位员工当年年薪的平均值和中位数;

2)已知员工年薪收入与工作年限成正相关关系,某员工工作第一年至第四年的年薪分别为4万元、5.5万元、6万元、8.5万元,预测该员工第六年的年薪为多少?

附:线性回归方程中系数计算公式分别为:,其中为样本均值.

【答案】(1)平均值为11万元,中位数为7万元(2)预测该员工年后的年薪收入为10.9万元

【解析】

1)直接利用平均数和中位数的定义计算得到答案.

2)设分别表示工作年限及相应年薪,利用公式直接计算得到回归方程,代入数据计算得到答案.

1)平均值为 万元,中位数为7万元.

2)设分别表示工作年限及相应年薪,则

由线性回归方程:时,

可预测该员工年后的年薪收入为10.9万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点Q是圆上的动点,点,若线段QN的垂直平分线MQ于点P.

(I)求动点P的轨迹E的方程

(II)若A是轨迹E的左顶点,过点D(-3,8)的直线l与轨迹E交于BC两点,求证:直线ABAC的斜率之和为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图.四棱柱的底面是直角梯形,,四边形均为正方形.

1)证明;平面平面ABCD

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,过点垂直于轴的直线与抛物线相交于两点,抛物线两点处的切线及直线所围成的三角形面积为.

(1)求抛物线的方程;

(2)设是抛物线上异于原点的两个动点,且满足,求面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 的焦点为,圆 ,过作垂直于轴的直线交抛物线两点,且的面积为.

(1)求抛物线的方程和圆的方程;

(2)若直线均过坐标原点,且互相垂直, 交抛物线,交圆 交抛物线,交圆,求的面积比的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形中, ,直角梯形通过直角梯形以直线为轴旋转得到,且使得平面平面 为线段的中点, 为线段上的动点.

)求证:

)当点满足时,求证:直线平面

)当点是线段中点时,求直线和平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设点,动点满足的轨迹为曲线.

(1)求曲线的方程;

(2)过定点作直线交曲线两点.为坐标原点,若直线轴垂直,求面积的最大值;

(3),在轴上,是否存在一点,使直线的斜率的乘积为非零常数?若存在,求出点的坐标和这个常数;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆Cx2+y2+x-6y+m=0与直线lx+2y-3=0

1)若直线l与圆C没有公共点,求m的取值范围;

2)若直线l与圆C相交于PQ两点,O为原点,且OPOQ,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某新上市的电子产品举行为期一个星期(7天)的促销活动,规定购买该电子产品可免费赠送礼品一份,随着促销活动的有效开展,第五天工作人员对前五天中参加活动的人数进行统计,y表示第x天参加该活动的人数,得到统计表格如下,经计算得.

x

1

2

3

4

5

y

4

m

10

23

22

1)若yx具有线性相关关系,请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程

2)预测该星期最后一天参加该活动的人数(按四舍五入取到整数).

参考公式:

查看答案和解析>>

同步练习册答案