精英家教网 > 高中数学 > 题目详情
已知函数f(x)=a(x-)-lnx,
(Ⅰ)若a=1,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若函数f(x)在其定义域内为增函数,求a的取值范围;
(Ⅲ)在(Ⅱ)的条件下,设函数,若在[1,e]上至少存在一点x0,使得f(x0)≥g(x0)成立,求实数a的取值范围。
解:(Ⅰ)当a=1时,函数
f(1)=1-1-ln1=0,
f′(x)=
曲线f(x)在点(1,f(1))处的切线的斜率为f′(1)=1+1-1=1,
从而曲线f(x)在点(1,f(1))处的切线方程为y-0=x-1,即y=x-1;
(Ⅱ)f′(x)=
要使f(x)在定义域(0,+∞)内是增函数,只需f′(x)≥0在(0,+∞)内恒成立,
即ax2-x+a≥0,得恒成立,
由于
,∴
∴f(x)在(0,+∞)内为增函数,实数a的取值范围是
(Ⅲ)∵在[1,e]上是减函数,
∴x=e时,g(x)min=1;x=1时,g(x)max=e,即 g(x)∈[1,e],
f′(x)=,令h(x)=ax2-x+a,
时,由(Ⅱ)知f(x)在[1,e]上是增函数,f(1)=0<1,
又g(x)在[1,e]上是减函数,
故只需f(x)max≥g(x)min,x∈[1,e],
,g(x)min=1,
,解得
所以实数a的取值范围是
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案