精英家教网 > 高中数学 > 题目详情
19.已知复数z=(a-1)+i,(a∈R)是纯虚数,则复数$\frac{2+\sqrt{2}i}{a-i}$的模等于$\sqrt{3}$.

分析 解法一:复数z=(a-1)+i,(a∈R)是纯虚数,可得a-1=0,解得a.利用复数的运算法则化简复数$\frac{2+\sqrt{2}i}{a-i}$,再利用模的计算公式即可得出.
解法二:复数z=(a-1)+i,(a∈R)是纯虚数,可得a-1=0,解得a.代入复数$\frac{2+\sqrt{2}i}{a-i}$,利用复数积的模的运算性质即可得出.

解答 解:解法一:复数z=(a-1)+i,(a∈R)是纯虚数,∴a-1=0,解得a=1.
则复数$\frac{2+\sqrt{2}i}{a-i}$=$\frac{2+\sqrt{2}i}{1-i}$=$\frac{(2+\sqrt{2}i)(1+i)}{(1-i)(1+i)}$=$\frac{2-\sqrt{2}+(2+\sqrt{2})i}{2}$,
则复数|$\frac{2+\sqrt{2}i}{a-i}$|=$\sqrt{(\frac{2-\sqrt{2}}{2})^{2}+(\frac{2+\sqrt{2}}{2})^{2}}$=$\sqrt{3}$,
解法二:复数z=(a-1)+i,(a∈R)是纯虚数,∴a-1=0,解得a=1.
则复数$\frac{2+\sqrt{2}i}{a-i}$=$\frac{2+\sqrt{2}i}{1-i}$,
则复数|$\frac{2+\sqrt{2}i}{a-i}$|=$\frac{|2+\sqrt{2}i|}{|1-i|}$=$\frac{\sqrt{{2}^{2}+(\sqrt{2})^{2}}}{\sqrt{2}}$=$\sqrt{3}$,
故答案为:$\sqrt{3}$.

点评 本题考查了复数的有关概念及其运算法则、模的计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.${∫}_{1}^{e}$(2x+$\frac{1}{x}$)dx等于(  )
A.e2-2B.e-1C.e2D.e+1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=3,两向量的夹角为60°,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在正方形ABCD中,AB=2,沿着对角线AC翻折,使得平面ABC⊥平面ACD,得到三棱锥B-ACD,若球O为三棱锥B-ACD的外接球,则球O的体积与三棱锥B-ACD的体积之比为(  )
A.2π:1B.3π:1C.2$\sqrt{2}$π:1D.4π:1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设$\overrightarrow a$=(1,-2),$\overrightarrow b$=(-3,4),$\overrightarrow c$=(3,2),则(2$\overrightarrow a$+$\overrightarrow b}$)•$\overrightarrow c$=(  )
A.-3B.3C.0D.-11

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.(1)设z=$\frac{10i}{3+i}$,则z的共轭复数为?
(2)执行如图所示的程序框图,若输入的a,b,k分别为1,2,3,
则输出的M是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某工厂有25周岁以上(含25周岁)工人300名,25周岁以下工人200名.为研究工人的日平均生产量是否与年龄有关,现采用分层抽样的方法,从中抽取了100名工人,先统计了他们某月的日平均生产件数,然后按工人年龄在“25周岁以上(含25周岁)”和“25周岁以下”分为两组,再将两组工人的日平均生产件数分成5组:[50,60),[60,70),[70,80),[80,90),[90,100]分别加以统计,得到如图所示的频率分布直方图.
(Ⅰ)从样本中日平均生产件数不足60件的工人中随机抽取2人,求至少抽到一名“25周岁以下组”工人的概率;
(Ⅱ)规定日平均生产件数不少于80件者为“生产能手”,请你根据已知条件完成2×2列联表,并判断是否有90%的把握认为“生产能手与工人所在的年龄组有关”?
P(Х2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
附:Х2=$\frac{{n{{({n_{11}}{n_{22}}-{n_{12}}{n_{21}})}^2}}}{{{n_{1+}}{n_{2+}}{n_{+1}}{n_{+2}}}}$
(注:此公式也可以写成K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若实数a>0,b>0,且$\frac{1}{a}$+$\frac{1}{b}$=1,则$\frac{1}{a-1}$+$\frac{1}{b-1}$的最小值是(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,已知AB为圆O的直径,C,D是圆O上的两个点,C是劣弧$\widehat{BD}$的中点,CE⊥AB于E,BD交AC于G,交CE于F.
(1)求证:CF=FG
(2)求证:DG•AC=AG•CE.

查看答案和解析>>

同步练习册答案