精英家教网 > 高中数学 > 题目详情
9.如图,已知AB为圆O的直径,C,D是圆O上的两个点,C是劣弧$\widehat{BD}$的中点,CE⊥AB于E,BD交AC于G,交CE于F.
(1)求证:CF=FG
(2)求证:DG•AC=AG•CE.

分析 (1)证明∠ACE=∠CGF,即可证明CF=FG
(2)证明Rt△ADG∽Rt△AEC,即可证明:DG•AC=AG•CE.

解答 证明:(1)∵C是劣弧BD的中点,∴∠DAC=∠CAB
在Rt△ADG与Rt△AEC中,∠ADB=∠AEC=90°,∴∠DGA=∠ACE,
又∠DGA=∠CGF,所以∠ACE=∠CGF.
从而,在△CGF中,CF=FG…(5分)
(2)在Rt△ADG与Rt△AEC中,∠DAC=∠CAB
因此,Rt△ADG∽Rt△AEC,由此可得$\frac{DG}{AG}=\frac{CE}{AC}$,即DG•AC=AG•CE…(10分)

点评 本题考查的知识点圆周角定理及其推理,同(等)角的余角相等,其中根据AB是圆O的直径,CE⊥AB于E,找出要证明相等的角所在的直角三角形,是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知复数z=(a-1)+i,(a∈R)是纯虚数,则复数$\frac{2+\sqrt{2}i}{a-i}$的模等于$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知θ∈(-$\frac{π}{2}$,π),若函数f(x)=cos(x+$\frac{π}{6}$+θ)为奇函数,则函数y=sin(2x+θ)的图象在(0,$\frac{π}{3}$)上的对称轴是(  )
A.x=$\frac{π}{4}$B.x=$\frac{π}{8}$C.x=$\frac{π}{12}$D.x=$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)顶点在原点,焦点是F(6,0)的抛物线的方程.
(2)求经过(1,2)点的抛物线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.sin(1050o)=(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{2}$D.-$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知正实数a,b 满足a+4b=8,那么ab的最大值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.公比为2的等比数列{an}中,若a1+a2=3,则a3+a4的值为12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,角C=$\frac{π}{3}$,边AB=1,则△ABC周长不可能是下列哪个数值(  )
A.3B.1+$\sqrt{3}$C.$\frac{5}{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)(x∈R)满足f(-x)=4-f(x),若函数y=$\frac{2x+1}{x}$与 y=f(x) 图象的交点为(x1,y1),(x2,y2),…,(xm,ym),则$\sum_{i=1}^{m}$(xi+yi)=2m.

查看答案和解析>>

同步练习册答案