| A. | 3 | B. | 1+$\sqrt{3}$ | C. | $\frac{5}{2}$ | D. | 4 |
分析 由正弦定理可得a=2sinA,b=2sinB,再由两角和差的正弦公式,结合正弦函数的性质,计算即可得到所求范围.
解答 解:在△ABC中,由正弦定理得:$\frac{a}{sinA}$=$\frac{b}{sinB}$=$\frac{c}{sinC}$=$\frac{1}{sin\frac{π}{3}}$,
即有a=$\frac{2\sqrt{3}}{3}$sinA,b=$\frac{2\sqrt{3}}{3}$sinB,
则△ABC周长L=a+b+c=$\frac{2\sqrt{3}}{3}$sinA+$\frac{2\sqrt{3}}{3}$sinB+1
=$\frac{2\sqrt{3}}{3}$(sinA+sinB)+1
=$\frac{2\sqrt{3}}{3}$[sinA+sin($\frac{2π}{3}$-A)]+1
=$\frac{2\sqrt{3}}{3}$($\frac{3}{2}$sinA+$\frac{\sqrt{3}}{2}$cosA)+1
=2sin(A+$\frac{π}{6}$)+1,
由0<A<$\frac{2π}{3}$,可得:$\frac{π}{6}$<A+$\frac{π}{6}$<$\frac{5π}{6}$,解得:$\frac{1}{2}$<sin(A+)≤1
解得:2sin(A+$\frac{π}{6}$)+1∈(2,3].
故选:D.
点评 本题考查正弦定理的运用,两角和差的正弦、余弦公式和余弦函数的性质的运用,考查运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(-1)-f(1)<0 | B. | f(-1)-f(1)>0 | C. | f(-1)+f(1)<0 | D. | f(-1)+f(1)>0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com