精英家教网 > 高中数学 > 题目详情
6.分别在区间[1,6],[1,4]内各任取一个实数依次为m,n,则m<n的概率是(  )
A.0.3B.0.6C.0.7D.0.4

分析 由题意知本题是一个几何概型,根据所给的条件作出试验发生是包含的所有事件是一个矩形区域,做出面积,看出满足条件的事件对应的面积,根据几何概型公式得到结果.

解答 解:如图,则在区间[1,6]和[1,4]内任取一个实数,
依次记为m和n,则(m,n)表示的图形面积为3×5=15
其中满足m<n,即在直线m=n左侧的点表示的图形面积为:$\frac{1}{2}×3×3$=$\frac{9}{2}$,
故m<n的概率P=$\frac{\frac{9}{2}}{15}$=0.3,
故选A.

点评 古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积、和体积、的比值得到.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=-x3+ax2-3x,g(x)=2x2ln|x|.
(1)若函数f(x)在R上是单调函数,求实数a的取值范围;
(2)判断函数g(x)的奇偶性,并写出g(x)的单调区间;
(3)若对一切x∈(0,+∞),函数f(x)的图象恒在g(x)图象的下方,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)顶点在原点,焦点是F(6,0)的抛物线的方程.
(2)求经过(1,2)点的抛物线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知正实数a,b 满足a+4b=8,那么ab的最大值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.公比为2的等比数列{an}中,若a1+a2=3,则a3+a4的值为12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,左、右焦点分别为F1,F2,四个顶点围成的四边形面积为4$\sqrt{2}$.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设O为坐标原点,过点P(0,1)的动直线与椭圆交于A,B两点.是否存在常数λ,使得$\overrightarrow{OA}$•$\overrightarrow{OB}$+λ$\overrightarrow{PA}$•$\overrightarrow{PB}$为定值?若存在,求λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在△ABC中,角C=$\frac{π}{3}$,边AB=1,则△ABC周长不可能是下列哪个数值(  )
A.3B.1+$\sqrt{3}$C.$\frac{5}{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.我国是世界上严重缺水的国家,城市缺水尤为突出.某市为了制定合理的节水方案,从该市随机调查了100位居民,获得了他们某月的用水量,整理得到如图的频率分布直方图.
(Ⅰ)求图中a的值;
(Ⅱ)设该市有500万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由:
(Ⅲ)估计本市居民的月用水量平均数(同一组中的数据用该区间的中点值代表).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知过点A(0,1)且斜率为k的直线?与圆C:(x-2)2+(y-3)2=1交于M,N两点.
(I)写出直线?的方程和圆C的圆心坐标和半径,并k的取值范围;
(II)若$\overrightarrow{OM}$•$\overrightarrow{ON}$=12,其中O为坐标原点,求|MN|.

查看答案和解析>>

同步练习册答案