精英家教网 > 高中数学 > 题目详情
15.我国是世界上严重缺水的国家,城市缺水尤为突出.某市为了制定合理的节水方案,从该市随机调查了100位居民,获得了他们某月的用水量,整理得到如图的频率分布直方图.
(Ⅰ)求图中a的值;
(Ⅱ)设该市有500万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由:
(Ⅲ)估计本市居民的月用水量平均数(同一组中的数据用该区间的中点值代表).

分析 (1)由频率分布直方图可知每段内的频率,由此利用频率分布直方图的性质能求出a的值.
(2)先求出不低于3吨的频率,由此能求出月均用水量不低于3吨的人数.
(3)利用频率分布直方图的性质能求出月平均用水量.

解答 解:(1)由频率分布直方图可知每段内的频率:
[0,0.5]:0.04;(0.5,1]:0.08;(1,1.5]:0,15; (1.5,2]:0.22; (2,2.5]:0.25; 
(2.5,3]:0.5a;(3,3.5]:0.06;(3.5,4]:0.04;(4.4.5]:0.02,…(2分)
则由0.04+0.08+0.15+0.22+0.25+0.5a+0.06+0.04+0.02=1,
解得a=0.28.…(4分)
(2)∵不低于3吨的频率为0.06+0.04+0.02=0.12,…(6分)
∴月均用水量不低于3吨的人数为500×0.12=60万.…(8分)
(3)月平均用水量为:
0.04×0.25+0.08×0.75+0.15×1.25+0.22×1.75+0.25×2.25+0.14×2.75+0.06×3,25+0.04×3.75+0.02×4.25…(10分)
=2.02(吨)
∴人月平均用水量为2.02吨.…12分

点评 本题考查实数值的求法,考查频数、平均数的求法,是基础题,解题时要认真审题,注意频率分布直方图的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.如图,A、B、C、D、E、F是圆O的六个等分点,则转盘指针不落在阴影部分的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.分别在区间[1,6],[1,4]内各任取一个实数依次为m,n,则m<n的概率是(  )
A.0.3B.0.6C.0.7D.0.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知复数z=(m2+3m+2)+(m2-m-6)i,则当实数m=-1时,复数z是纯虚数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知等差数列{an}满足:a5=3,前3项和S3为$\frac{9}{2}$.
(1)求数列{an}的通项公式;
(2)求数列{$\frac{1}{{{a_n}{a_{n+2}}}}$}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知i为虚数单位,a为实数,复数$\overline z$=$\frac{a-3i}{1-i}$在复平面上对应的点在y轴上,则a为(  )
A.-3B.$-\frac{1}{3}$C.$\frac{1}{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设函数f(x)是定义在R上的可导函数,若f(x)-xf′(x)>0,则有(  )
A.f(-1)-f(1)<0B.f(-1)-f(1)>0C.f(-1)+f(1)<0D.f(-1)+f(1)>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分的中位数为me,众数为
mo,则(  )
A.me=moB.mo<meC.me<moD.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知向量$\overrightarrow a=(1,λ)$,$\overrightarrow b=(-2,1)$,若向量$\overrightarrow a$与$\overrightarrow c=(1,-2)$垂直,则$2\overrightarrow a+\overrightarrow b$=(0,2).

查看答案和解析>>

同步练习册答案