精英家教网 > 高中数学 > 题目详情
20.已知向量$\overrightarrow a=(1,λ)$,$\overrightarrow b=(-2,1)$,若向量$\overrightarrow a$与$\overrightarrow c=(1,-2)$垂直,则$2\overrightarrow a+\overrightarrow b$=(0,2).

分析 由$\overrightarrow a$与$\overrightarrow c$垂直可得$\overrightarrow{a}•\overrightarrow{c}$=0,由此求得λ的值,从而求得$2\overrightarrow a+\overrightarrow b$的值.

解答 解:由$\overrightarrow a$与$\overrightarrow c$垂直,得(1,λ)•(1,-2)=0,解得$λ=\frac{1}{2}$,
∴$2\overrightarrow a+\overrightarrow b=(2,1)+(-2,1)=(0,2)$,
故答案为:(0,2).

点评 本题主要考查两个向量两垂直的性质,两个向量的数量积公式,两个向量坐标形式的运算法则,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.我国是世界上严重缺水的国家,城市缺水尤为突出.某市为了制定合理的节水方案,从该市随机调查了100位居民,获得了他们某月的用水量,整理得到如图的频率分布直方图.
(Ⅰ)求图中a的值;
(Ⅱ)设该市有500万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由:
(Ⅲ)估计本市居民的月用水量平均数(同一组中的数据用该区间的中点值代表).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知过点A(0,1)且斜率为k的直线?与圆C:(x-2)2+(y-3)2=1交于M,N两点.
(I)写出直线?的方程和圆C的圆心坐标和半径,并k的取值范围;
(II)若$\overrightarrow{OM}$•$\overrightarrow{ON}$=12,其中O为坐标原点,求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.“ab<0”是“a>0且b<0”的(  )
A.必要不充分条件B.充要条件
C.充分不必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知双曲线$\frac{{x}^{2}}{4}$-y2=1,则双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{\sqrt{5}}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆E的中心在坐标原点,且抛物线x2=-4$\sqrt{5}$y的焦点是椭圆E的一个焦点,以椭圆E的长轴的两个端点及短轴的一个端点为顶点的三角形的面积为6.
(Ⅰ)求椭圆E的方程;
(Ⅱ)若斜率为$\frac{3}{2}$的直线l与椭圆E交于不同的两点A、B,又点C($\frac{4}{3}$,2),求△ABC面积最大时对应的直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设i为虚数单位,若复数z1=(3-i)(2-i)与复数z2在复平面内对应的点在同一个象限,则z2可能为(  )
A.2+iB.-3+4iC.-1-7iD.1+$\frac{1}{i}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.正方形ABCD的边长为1,把三角形ABD沿对角线BD翻折,使得面ABD⊥面BCD后,有如下四个结论:
(1)AC⊥BD;(2)△ACD是等边三角形;(3)四面体A-BCD的表面积为$1+\frac{{\sqrt{3}}}{2}$.(4)四面体A-BCD的内切球半径是$\frac{{2\sqrt{3}-\sqrt{6}}}{6}$.
则正确结论的序号为(1)(2)(3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知$sinα=\frac{3}{5}$,α是第二象限的角,且tan(α+β)=1,求tanβ的值.

查看答案和解析>>

同步练习册答案